Home
Class 12
MATHS
If x=2 cos theta- cos 2 theta and y=2 si...

If `x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta,` then `(dy)/(dx)`=

A

`- tan ((3theta)/2)`

B

`cot(theta/2)`

C

`tan ((3theta)/2)`

D

`cot ((2theta)/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equations \(x = 2 \cos \theta - \cos 2\theta\) and \(y = 2 \sin \theta - \sin 2\theta\), we will use the chain rule. Here’s a step-by-step solution: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = 2 \cos \theta - \cos 2\theta \] Differentiate \(x\) with respect to \(\theta\): \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(2 \cos \theta) - \frac{d}{d\theta}(\cos 2\theta) \] Using the derivative of \(\cos\) and the chain rule: \[ \frac{dx}{d\theta} = -2 \sin \theta + 2 \sin 2\theta \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = 2 \sin \theta - \sin 2\theta \] Differentiate \(y\) with respect to \(\theta\): \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(2 \sin \theta) - \frac{d}{d\theta}(\sin 2\theta) \] Using the derivative of \(\sin\) and the chain rule: \[ \frac{dy}{d\theta} = 2 \cos \theta - 2 \cos 2\theta \] ### Step 3: Use the chain rule to find \(\frac{dy}{dx}\) By the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{2 \cos \theta - 2 \cos 2\theta}{-2 \sin \theta + 2 \sin 2\theta} \] ### Step 4: Simplify the expression Factor out common terms: \[ \frac{dy}{dx} = \frac{2(\cos \theta - \cos 2\theta)}{2(-\sin \theta + \sin 2\theta)} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\cos \theta - \cos 2\theta}{-\sin \theta + \sin 2\theta} \] ### Step 5: Use trigonometric identities Using the identities: \[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] and \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] Let \(A = 2\theta\) and \(B = \theta\): \[ \cos \theta - \cos 2\theta = -2 \sin\left(\frac{3\theta}{2}\right) \sin\left(\frac{\theta}{2}\right) \] \[ -\sin \theta + \sin 2\theta = 2 \cos\left(\frac{3\theta}{2}\right) \sin\left(\frac{\theta}{2}\right) \] Substituting these into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-2 \sin\left(\frac{3\theta}{2}\right) \sin\left(\frac{\theta}{2}\right)}{2 \cos\left(\frac{3\theta}{2}\right) \sin\left(\frac{\theta}{2}\right)} \] ### Step 6: Cancel common terms Cancel \(2\) and \(\sin\left(\frac{\theta}{2}\right)\) (assuming \(\sin\left(\frac{\theta}{2}\right) \neq 0\)): \[ \frac{dy}{dx} = -\frac{\sin\left(\frac{3\theta}{2}\right)}{\cos\left(\frac{3\theta}{2}\right)} = -\tan\left(\frac{3\theta}{2}\right) \] ### Final Answer: \[ \frac{dy}{dx} = -\tan\left(\frac{3\theta}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If x=2cos theta-cos2 theta and y=2sin theta-sin2 theta then prove that (dy)/(dx)=tan((3 theta)/(2))

If x=2cos theta-cos2 theta and y=2sin theta-sin2 theta, prove that (dy)/(dx)=tan((3 theta)/(2))

If x=2cos theta -cos 2theta ,y=2sin theta -sin 2theta ,then (dy)/(dx) =

if x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

If =2cos theta-cos2 theta and y=2sin theta-sin2 theta Prove that (dy)/(dx)=tan((3 theta)/(2))

If x = sin theta - cos theta and y = sin theta + cos theta , then (dy)/(dx) =

x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta

Find (dy)/(dx) , " if x " = 2 cos theta - cos 2 theta and y = 2sin theta - sin 2 theta .

TARGET PUBLICATION-DIFFERENTIATION -COMPETITIVE THINKING
  1. If x = log (1 + t^(2)) " and " y = t - tan^(-1)t, " then" dy/dx is e...

    Text Solution

    |

  2. If x=a(t-sint), y=a(1-cost), then (dy)/(dx) is equal to

    Text Solution

    |

  3. If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (d...

    Text Solution

    |

  4. If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

    Text Solution

    |

  5. Daribative of (log x) ^(x) w.r.t log x is

    Text Solution

    |

  6. DIfferential coefficient of tan^-1(x/(1+sqrt(1-x^2)))w.r.t sin^-1x is

    Text Solution

    |

  7. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1) is

    Text Solution

    |

  8. The differential coefficient of tan^(-1)((sqrt(1+x^2)-1)/x) with respe...

    Text Solution

    |

  9. Find the differential coefficient of sin^-1(2xsqrt(1-x^2))w.r.t. sin^-...

    Text Solution

    |

  10. Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to ...

    Text Solution

    |

  11. The derivative of f(x)=x^(tan^-1 x) with respect to g(x)=sec^-1(1/(2x^...

    Text Solution

    |

  12. If x = ct and y=c/t, find (dy)/(dx) at t=2.

    Text Solution

    |

  13. If y = a sin^(3) theta " and " x = a cos^(3) theta . " then at " th...

    Text Solution

    |

  14. If x= e^(theta )(sin theta - cos theta ) , y= e^(theta ) ( sin ...

    Text Solution

    |

  15. Derivative of log (sec theta + tan theta ) with respect to sec th...

    Text Solution

    |

  16. The differential coefficient of sec^(-1)(1/(2x^2-1)) w.r.t sqrt(1-x^2)...

    Text Solution

    |

  17. Find the derivative of f(tanx) w.r.t. g(secx) at x=pi/4 , where f^(pri...

    Text Solution

    |

  18. If y=A sin 5x, then (d^2y)/(dx^2)=

    Text Solution

    |

  19. If a=A cos 4t+B sin4t, then (d^(2)x)/(dt^(2)) is equal to

    Text Solution

    |

  20. If x^2/a^2+y^2/b^2=1 then, (d^2y)/(dx^2)=

    Text Solution

    |