Home
Class 12
MATHS
If y=(sin^-1x)^2/2,then(1-x^2)y2-xy1=...

If `y=(sin^-1x)^2/2,then(1-x^2)y_2-xy_1`=

A

y

B

2y

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression \( (1-x^2)y_2 - xy_1 \) where \( y = \frac{(\sin^{-1} x)^2}{2} \). We will first find \( y_1 \) (the first derivative of \( y \)) and \( y_2 \) (the second derivative of \( y \)). ### Step 1: Find \( y_1 \) Given: \[ y = \frac{(\sin^{-1} x)^2}{2} \] We differentiate \( y \) with respect to \( x \): \[ y_1 = \frac{d}{dx}\left(\frac{(\sin^{-1} x)^2}{2}\right) \] Using the chain rule: \[ y_1 = \frac{1}{2} \cdot 2(\sin^{-1} x) \cdot \frac{d}{dx}(\sin^{-1} x) \] We know that: \[ \frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}} \] Thus, \[ y_1 = (\sin^{-1} x) \cdot \frac{1}{\sqrt{1-x^2}} = \frac{\sin^{-1} x}{\sqrt{1-x^2}} \] ### Step 2: Find \( y_2 \) Now we differentiate \( y_1 \) to find \( y_2 \): \[ y_2 = \frac{d}{dx}\left(\frac{\sin^{-1} x}{\sqrt{1-x^2}}\right) \] Using the quotient rule: \[ y_2 = \frac{\sqrt{1-x^2} \cdot \frac{d}{dx}(\sin^{-1} x) - \sin^{-1} x \cdot \frac{d}{dx}(\sqrt{1-x^2})}{(1-x^2)} \] Calculating the derivatives: \[ \frac{d}{dx}(\sqrt{1-x^2}) = \frac{-x}{\sqrt{1-x^2}} \] So we have: \[ y_2 = \frac{\sqrt{1-x^2} \cdot \frac{1}{\sqrt{1-x^2}} - \sin^{-1} x \cdot \left(\frac{-x}{\sqrt{1-x^2}}\right)}{1-x^2} \] This simplifies to: \[ y_2 = \frac{1 + x \sin^{-1} x}{(1-x^2)\sqrt{1-x^2}} \] ### Step 3: Substitute \( y_1 \) and \( y_2 \) into the expression Now we substitute \( y_1 \) and \( y_2 \) into the expression \( (1-x^2)y_2 - xy_1 \): \[ (1-x^2)y_2 - xy_1 = (1-x^2) \cdot \frac{1 + x \sin^{-1} x}{(1-x^2)\sqrt{1-x^2}} - x \cdot \frac{\sin^{-1} x}{\sqrt{1-x^2}} \] This simplifies to: \[ = \frac{1 + x \sin^{-1} x}{\sqrt{1-x^2}} - \frac{x \sin^{-1} x}{\sqrt{1-x^2}} \] Combining the terms: \[ = \frac{1}{\sqrt{1-x^2}} \] ### Step 4: Final Result Thus, the final value of \( (1-x^2)y_2 - xy_1 \) is: \[ \frac{1}{\sqrt{1-x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If y=(sin^(-1)x)^(2), then (1-x^(2))y_(2) is equal to xy_(1)+2(b)xy_(1)-2(c)xy_(1)+2(d) none of these

If y=(sin^(-1)x)^(2)," then "(1-x^(2))y_(2)-xy_(1)=

If y=cos(msin^(-1)x)," then "(1-x^(2))y_(2)-xy_1=

Ify=(1)/(2)(sin^(-1)x),then(1-x^(2))y_(2)-xy_(2)=?

If y=sin(m sin^(-1)x), then (1-x^(2))y_(2)-xy_(1) is equal to m^(2)y(b)my(c)-m^(2)y(d) none of these

If y=tan^(-1)x, then (1+x^(2))y_(2)+2xy_(1)= (a) y(b)0(c)1(d)2

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y=cos(m sin^(-1)x), show that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0

TARGET PUBLICATION-DIFFERENTIATION -COMPETITIVE THINKING
  1. If y=(tan^(-1)x)^2, then (x^2+1)^2 (d^2y)/(dx^2) + 2x(x^2+1) dy/dx=

    Text Solution

    |

  2. If y=(sin^(-1)x)^(2),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)...

    Text Solution

    |

  3. If y=(sin^-1x)^2/2,then(1-x^2)y2-xy1=

    Text Solution

    |

  4. If sqrty=cos^-1x, then it satisfies the dIfferential equation (1-x^2)(...

    Text Solution

    |

  5. If sqrtr=ae^(thetacotalpha), where a and alpha are real numbers, then ...

    Text Solution

    |

  6. If y=2/sqrt(a^2-b^2)tan^-1[sqrt((a-b)/(a+b))tan(x/2)] then (d2y)/(dx^2...

    Text Solution

    |

  7. If u = x^(2) + y^(2) " and " x = s + 3t, y = 2s - t , " then " (d^(2...

    Text Solution

    |

  8. If x=at^2,y=2at, then (d^2x)/(dy^2)=

    Text Solution

    |

  9. If x=f(t) and yy=g(t) are differentiable functions of t then (d^...

    Text Solution

    |

  10. If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

    Text Solution

    |

  11. If x^2y^3=(x+y)^5, then (d^2y)/(dx^2) is

    Text Solution

    |

  12. If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^...

    Text Solution

    |

  13. If x=costheta, y=sin5theta then (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=

    Text Solution

    |

  14. If y=e^sqrtx+e^(-sqrtx), then (x(d^2y)/(dx^2)+1/2.(dy)/(dx)) is equal ...

    Text Solution

    |

  15. If x=2at^3,y=at^4, then (d^2y)/(dx^2) at t=2 is

    Text Solution

    |

  16. If x=acostheta,y=bsintheta , then (d^2y)/(dx^2) when theta=pi/4 is gi...

    Text Solution

    |

  17. If y = x^(3)log ( log (1+x) ) ,theny''(0) =

    Text Solution

    |

  18. If x=e^t sin t , y=e^t cos t, t is a parameter , then (d^2y)/(dx^2) at...

    Text Solution

    |

  19. If x=3 cos t and y=4 sin t, then (d^2y)/(dx^2) at the point (x0,y0)=(3...

    Text Solution

    |

  20. If f:R in R is defined by f(x)=(x^(2)-ax+1)/(x^(2)+ax+1),0ltalt2, th...

    Text Solution

    |