Home
Class 12
MATHS
If x^2y^3=(x+y)^5, then (d^2y)/(dx^2) is...

If `x^2y^3=(x+y)^5`, then `(d^2y)/(dx^2)` is

A

`y/x`

B

`(x+(dy)/(dx)+y)/y^2`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( x^2y^3 = (x+y)^5 \) and find \( \frac{d^2y}{dx^2} \), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate both sides with respect to \( x \) Starting with the equation: \[ x^2y^3 = (x+y)^5 \] We differentiate both sides: \[ \frac{d}{dx}(x^2y^3) = \frac{d}{dx}((x+y)^5) \] Using the product rule on the left side: \[ \frac{d}{dx}(x^2y^3) = 2xy^3 + x^2 \cdot 3y^2 \frac{dy}{dx} \] Using the chain rule on the right side: \[ \frac{d}{dx}((x+y)^5) = 5(x+y)^4 \left(1 + \frac{dy}{dx}\right) \] Thus, we have: \[ 2xy^3 + 3x^2y^2 \frac{dy}{dx} = 5(x+y)^4 \left(1 + \frac{dy}{dx}\right) \] ### Step 2: Rearranging the equation Rearranging gives: \[ 2xy^3 + 3x^2y^2 \frac{dy}{dx} = 5(x+y)^4 + 5(x+y)^4 \frac{dy}{dx} \] Now, isolate the terms with \( \frac{dy}{dx} \): \[ 3x^2y^2 \frac{dy}{dx} - 5(x+y)^4 \frac{dy}{dx} = 5(x+y)^4 - 2xy^3 \] Factor out \( \frac{dy}{dx} \): \[ \left(3x^2y^2 - 5(x+y)^4\right) \frac{dy}{dx} = 5(x+y)^4 - 2xy^3 \] ### Step 3: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{5(x+y)^4 - 2xy^3}{3x^2y^2 - 5(x+y)^4} \] ### Step 4: Differentiate again to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \) using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(3x^2y^2 - 5(x+y)^4) \frac{d}{dx}(5(x+y)^4 - 2xy^3) - (5(x+y)^4 - 2xy^3) \frac{d}{dx}(3x^2y^2 - 5(x+y)^4)}{(3x^2y^2 - 5(x+y)^4)^2} \] ### Step 5: Compute derivatives of the numerator and denominator 1. **For the numerator**: - Differentiate \( 5(x+y)^4 - 2xy^3 \) - Differentiate \( 3x^2y^2 - 5(x+y)^4 \) 2. **Substitute back into the equation**. This will give you the expression for \( \frac{d^2y}{dx^2} \). ### Final Result After performing the necessary calculations, you will arrive at the final expression for \( \frac{d^2y}{dx^2} \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If x^(2)y^(3)=(x+y)^(5), then (d^(2)y)/(dx^(2)) is

If y=x^3 then (d^2y)/(dx^2) is..

If y=A sin 5x, then (d^2y)/(dx^2) =

If y=Ae^(5x) , then (d^(2)y)/(dx^(2)) is equal to

If x^2y^2=(x+y)^5 then find dy/dx

If x^(2) y^(5) = (x + y)^(7) , " then " (d^(2)y)/(dx^(2)) is equal to

If y = Ae^(5x) + Be^(-5x) , then (d^2y)/(dx^2) is equal to : (a) 25y (b) 5y (c) -25y (d) 15y

If x=at^2,y=2 at then find (d^2y)/(dx^2) .

If y=sin3x cos5x, then (d^(2)y)/(dx^(2))=?

TARGET PUBLICATION-DIFFERENTIATION -COMPETITIVE THINKING
  1. If x=f(t) and yy=g(t) are differentiable functions of t then (d^...

    Text Solution

    |

  2. If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

    Text Solution

    |

  3. If x^2y^3=(x+y)^5, then (d^2y)/(dx^2) is

    Text Solution

    |

  4. If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^...

    Text Solution

    |

  5. If x=costheta, y=sin5theta then (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=

    Text Solution

    |

  6. If y=e^sqrtx+e^(-sqrtx), then (x(d^2y)/(dx^2)+1/2.(dy)/(dx)) is equal ...

    Text Solution

    |

  7. If x=2at^3,y=at^4, then (d^2y)/(dx^2) at t=2 is

    Text Solution

    |

  8. If x=acostheta,y=bsintheta , then (d^2y)/(dx^2) when theta=pi/4 is gi...

    Text Solution

    |

  9. If y = x^(3)log ( log (1+x) ) ,theny''(0) =

    Text Solution

    |

  10. If x=e^t sin t , y=e^t cos t, t is a parameter , then (d^2y)/(dx^2) at...

    Text Solution

    |

  11. If x=3 cos t and y=4 sin t, then (d^2y)/(dx^2) at the point (x0,y0)=(3...

    Text Solution

    |

  12. If f:R in R is defined by f(x)=(x^(2)-ax+1)/(x^(2)+ax+1),0ltalt2, th...

    Text Solution

    |

  13. If y=(a^(cos^-1x))/(1+a^(cos^-1x))andz=a^(cos^-1x),then (dy)/(dx)=

    Text Solution

    |

  14. The first derivative of the function [cos^(-1)(sin sqrt((1+x)/2))+x^x]...

    Text Solution

    |

  15. Let g(x) be the inverse of the function f(x), and f'(x)=1/(1+x^3) then...

    Text Solution

    |

  16. Let f(x)=tan^-1 x. Then, f'(x)+f''(x) is = 0, when x is equal to

    Text Solution

    |

  17. If x=a(t-(1)/(t)),y=a(t+(1)/(t)),"show that "(dy)/(dx)=(x)/(y)

    Text Solution

    |

  18. If 2y=sin^-1(x+5y),then,(dy)/(dx) is equal to

    Text Solution

    |

  19. Let f:R to R be a function such that f(x+y)=f(x)+f(y)"for all", x,y in...

    Text Solution

    |

  20. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |