Home
Class 12
MATHS
If x=e^t sin t , y=e^t cos t, t is a par...

If `x=e^t sin t , y=e^t cos t`, t is a parameter , then `(d^2y)/(dx^2)` at (1,1) is equal to

A

`-1/2`

B

`-1/4`

C

0

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) at the point (1, 1) given the parametric equations \(x = e^t \sin t\) and \(y = e^t \cos t\), we will follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) - We start by differentiating \(x\) and \(y\) with respect to \(t\). \[ \frac{dx}{dt} = \frac{d}{dt}(e^t \sin t) = e^t \sin t + e^t \cos t = e^t (\sin t + \cos t) \] \[ \frac{dy}{dt} = \frac{d}{dt}(e^t \cos t) = e^t \cos t - e^t \sin t = e^t (\cos t - \sin t) \] ### Step 2: Find \(\frac{dy}{dx}\) - We can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{e^t (\cos t - \sin t)}{e^t (\sin t + \cos t)} = \frac{\cos t - \sin t}{\sin t + \cos t} \] ### Step 3: Differentiate \(\frac{dy}{dx}\) with respect to \(t\) - To find \(\frac{d^2y}{dx^2}\), we need to differentiate \(\frac{dy}{dx}\) with respect to \(t\): Using the quotient rule: \[ \frac{d}{dt}\left(\frac{\cos t - \sin t}{\sin t + \cos t}\right) = \frac{(\sin t + \cos t)(-\sin t - \cos t) - (\cos t - \sin t)(\cos t + \sin t)}{(\sin t + \cos t)^2} \] ### Step 4: Simplify the expression - The numerator simplifies as follows: \[ -\sin^2 t - \cos^2 t - (\cos^2 t - \sin^2 t) = -2\sin^2 t \] Thus, \[ \frac{d}{dt}\left(\frac{\cos t - \sin t}{\sin t + \cos t}\right) = \frac{-2\sin^2 t}{(\sin t + \cos t)^2} \] ### Step 5: Find \(\frac{d^2y}{dx^2}\) - Now we can find \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{1}{\frac{dx}{dt}} = \frac{-2\sin^2 t}{(\sin t + \cos t)^2} \cdot \frac{1}{e^t (\sin t + \cos t)} \] ### Step 6: Evaluate at the point (1, 1) - We need to find the value of \(t\) such that \(x = 1\) and \(y = 1\). From \(x = e^t \sin t\) and \(y = e^t \cos t\), we set: 1. \(e^t \sin t = 1\) 2. \(e^t \cos t = 1\) Dividing these two equations gives: \[ \tan t = 1 \implies t = \frac{\pi}{4} \] Now substituting \(t = \frac{\pi}{4}\): \[ \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad e^{\frac{\pi}{4}} = \sqrt{2} \] ### Step 7: Substitute \(t = \frac{\pi}{4}\) into \(\frac{d^2y}{dx^2}\) - Substitute \(t = \frac{\pi}{4}\) into the expression for \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{-2\left(\frac{1}{\sqrt{2}}\right)^2}{\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right)^2} \cdot \frac{1}{e^{\frac{\pi}{4}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right)} \] Calculating this gives: \[ \frac{d^2y}{dx^2} = \frac{-2 \cdot \frac{1}{2}}{(1)^2} \cdot \frac{1}{\sqrt{2} e^{\frac{\pi}{4}}} = \frac{-1}{\sqrt{2} e^{\frac{\pi}{4}}} \] ### Final Answer Thus, \(\frac{d^2y}{dx^2}\) at the point (1, 1) is: \[ \frac{d^2y}{dx^2} = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If x=3cos t and y=5sint , where t is a parameter, then 9(d^(2)y)/(dx^(2)) at t=-(pi)/(6) is equal to

If x = e^(t) sin t and y = e^(t) cos t, t is a parameter , then the value of (d^(2) x)/( dy^(2)) + (d^(2) y)/(dx^(2)) at t = 0 , is :

If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at t = pi is

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find (d^(2)y)/(dx^(2))

TARGET PUBLICATION-DIFFERENTIATION -COMPETITIVE THINKING
  1. If x^2y^3=(x+y)^5, then (d^2y)/(dx^2) is

    Text Solution

    |

  2. If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^...

    Text Solution

    |

  3. If x=costheta, y=sin5theta then (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=

    Text Solution

    |

  4. If y=e^sqrtx+e^(-sqrtx), then (x(d^2y)/(dx^2)+1/2.(dy)/(dx)) is equal ...

    Text Solution

    |

  5. If x=2at^3,y=at^4, then (d^2y)/(dx^2) at t=2 is

    Text Solution

    |

  6. If x=acostheta,y=bsintheta , then (d^2y)/(dx^2) when theta=pi/4 is gi...

    Text Solution

    |

  7. If y = x^(3)log ( log (1+x) ) ,theny''(0) =

    Text Solution

    |

  8. If x=e^t sin t , y=e^t cos t, t is a parameter , then (d^2y)/(dx^2) at...

    Text Solution

    |

  9. If x=3 cos t and y=4 sin t, then (d^2y)/(dx^2) at the point (x0,y0)=(3...

    Text Solution

    |

  10. If f:R in R is defined by f(x)=(x^(2)-ax+1)/(x^(2)+ax+1),0ltalt2, th...

    Text Solution

    |

  11. If y=(a^(cos^-1x))/(1+a^(cos^-1x))andz=a^(cos^-1x),then (dy)/(dx)=

    Text Solution

    |

  12. The first derivative of the function [cos^(-1)(sin sqrt((1+x)/2))+x^x]...

    Text Solution

    |

  13. Let g(x) be the inverse of the function f(x), and f'(x)=1/(1+x^3) then...

    Text Solution

    |

  14. Let f(x)=tan^-1 x. Then, f'(x)+f''(x) is = 0, when x is equal to

    Text Solution

    |

  15. If x=a(t-(1)/(t)),y=a(t+(1)/(t)),"show that "(dy)/(dx)=(x)/(y)

    Text Solution

    |

  16. If 2y=sin^-1(x+5y),then,(dy)/(dx) is equal to

    Text Solution

    |

  17. Let f:R to R be a function such that f(x+y)=f(x)+f(y)"for all", x,y in...

    Text Solution

    |

  18. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |

  19. Let f1(x)=e^x,f2(x)=e^(f1(x)),"........",f(n+1)(x)=e^(fn(x)) for all n...

    Text Solution

    |

  20. Let f: R to R be a dIfferentiable function . If f is even, then f'(0) ...

    Text Solution

    |