Home
Class 12
MATHS
Let f1(x)=e^x,f2(x)=e^(f1(x)),"........"...

Let `f_1(x)=e^x,f_2(x)=e^(f_1(x)),"........",f_(n+1)(x)=e^(f_n(x))` for all `nge1`. Then for any fixed `n,(d)/(dx)f_n(x)` is

A

`f_n(x)`

B

`f_n(x)f_(n-1)(x)`

C

`f_n(x)f_(n-1)...f_1(x)`

D

`f_n(x)...f_1(x)e^x`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

Let f_(1)(x)=e^(x),f_(2)(x)=e^(f_(1)(x)),......,f_(n+1)(x)=e^(f_(n)(x)) for all n>=1. Then for any fixed n,(d)/(dx)f_(n)(x) is

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

Let f _(1)(x) =e ^(x) and f _(n+1) (x) =e ^(f _(n)(x))) for any n ge 1, n in N. Then for any fixed n, the vlaue of (d)/(dx) f )(n)(x) equals:

let f(x)=e^(x)*e^(x^(2))*e^(x^(3))..........e^(x^(n)) and g(x)=lim_(n rarr oo)f_(n)(x) then

If f(x)=x+1, then write the value of (d)/(dx)(fof)(x)

Let f :R -{(3)/(2)}to R, f (x) = (3x+5)/(2x-3).Let f _(1) (x)=f (x), f_(n) (x)=f (f _(n-1) (x))) for pige 2, n in N, then f _(2008) (x)+ f _(2009) (x)=

Let f(x)=(x+1)/(x-1) for all xne1 . Let f^(1)(x)=f(x),f^(2)(x)=f(f(x)) and generally f^(n)(x)=f(f^(n-1)(x)) " for n"gt1 Let P=f^(1)(2)f^(2)(3)f^(3)(4)f^(4)(5) Which of the following is a multiple of P- (A) 125 (B) 375 (C) 250 (D) 147

Theorem: (d)/(dx)(int f(x)dx=f(x)

f(x)=e^(-(1)/(x)), where x>0, Let for each positive integer n,P_(n) be the polynomial such that (d^(n)f(x))/(dx^(n))=P_(n)((1)/(x))e^(-(1)/(x)) for all x>0. show that P_(n+1)(x)=x^(2)[P_(n)(x)-(d)/(dx)P_(n)(x)]

TARGET PUBLICATION-DIFFERENTIATION -COMPETITIVE THINKING
  1. If x^2y^3=(x+y)^5, then (d^2y)/(dx^2) is

    Text Solution

    |

  2. If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^...

    Text Solution

    |

  3. If x=costheta, y=sin5theta then (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=

    Text Solution

    |

  4. If y=e^sqrtx+e^(-sqrtx), then (x(d^2y)/(dx^2)+1/2.(dy)/(dx)) is equal ...

    Text Solution

    |

  5. If x=2at^3,y=at^4, then (d^2y)/(dx^2) at t=2 is

    Text Solution

    |

  6. If x=acostheta,y=bsintheta , then (d^2y)/(dx^2) when theta=pi/4 is gi...

    Text Solution

    |

  7. If y = x^(3)log ( log (1+x) ) ,theny''(0) =

    Text Solution

    |

  8. If x=e^t sin t , y=e^t cos t, t is a parameter , then (d^2y)/(dx^2) at...

    Text Solution

    |

  9. If x=3 cos t and y=4 sin t, then (d^2y)/(dx^2) at the point (x0,y0)=(3...

    Text Solution

    |

  10. If f:R in R is defined by f(x)=(x^(2)-ax+1)/(x^(2)+ax+1),0ltalt2, th...

    Text Solution

    |

  11. If y=(a^(cos^-1x))/(1+a^(cos^-1x))andz=a^(cos^-1x),then (dy)/(dx)=

    Text Solution

    |

  12. The first derivative of the function [cos^(-1)(sin sqrt((1+x)/2))+x^x]...

    Text Solution

    |

  13. Let g(x) be the inverse of the function f(x), and f'(x)=1/(1+x^3) then...

    Text Solution

    |

  14. Let f(x)=tan^-1 x. Then, f'(x)+f''(x) is = 0, when x is equal to

    Text Solution

    |

  15. If x=a(t-(1)/(t)),y=a(t+(1)/(t)),"show that "(dy)/(dx)=(x)/(y)

    Text Solution

    |

  16. If 2y=sin^-1(x+5y),then,(dy)/(dx) is equal to

    Text Solution

    |

  17. Let f:R to R be a function such that f(x+y)=f(x)+f(y)"for all", x,y in...

    Text Solution

    |

  18. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |

  19. Let f1(x)=e^x,f2(x)=e^(f1(x)),"........",f(n+1)(x)=e^(fn(x)) for all n...

    Text Solution

    |

  20. Let f: R to R be a dIfferentiable function . If f is even, then f'(0) ...

    Text Solution

    |