Home
Class 11
PHYSICS
If G is universal gravitational constant...

If G is universal gravitational constant and g is acceleration due to gravity then the unit of the quantity `(G)/(g)` is

A

`"km-m"^(2)`

B

`"kgm"^(-1)`

C

`"kgm"^(-2)`

D

`"m"^(2) "kg"^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit of the quantity \(\frac{G}{g}\), where \(G\) is the universal gravitational constant and \(g\) is the acceleration due to gravity, we will follow these steps: ### Step 1: Identify the units of \(G\) and \(g\) 1. **Unit of \(G\)**: The universal gravitational constant \(G\) has the unit of \(\text{N m}^2/\text{kg}^2\) (Newton meter squared per kilogram squared). - 1 Newton (N) = 1 kg m/s², so the unit of \(G\) can be expressed as: \[ G = \frac{\text{kg} \cdot \text{m}^2}{\text{kg}^2} = \frac{\text{m}^2}{\text{kg} \cdot \text{s}^2} \] 2. **Unit of \(g\)**: The acceleration due to gravity \(g\) has the unit of \(\text{m/s}^2\). ### Step 2: Write the expression for \(\frac{G}{g}\) Now we can express the quantity \(\frac{G}{g}\): \[ \frac{G}{g} = \frac{\frac{\text{m}^2}{\text{kg} \cdot \text{s}^2}}{\frac{\text{m}}{\text{s}^2}} \] ### Step 3: Simplify the expression To simplify \(\frac{G}{g}\), we multiply by the reciprocal of \(g\): \[ \frac{G}{g} = \frac{\text{m}^2}{\text{kg} \cdot \text{s}^2} \cdot \frac{\text{s}^2}{\text{m}} = \frac{\text{m}^2 \cdot \text{s}^2}{\text{kg} \cdot \text{s}^2 \cdot \text{m}} = \frac{\text{m}}{\text{kg}} \] ### Step 4: Final unit of \(\frac{G}{g}\) Thus, the unit of the quantity \(\frac{G}{g}\) is: \[ \frac{G}{g} = \frac{\text{m}}{\text{kg}} \] ### Conclusion The final answer is that the unit of the quantity \(\frac{G}{g}\) is \(\text{m/kg}\). ---

To find the unit of the quantity \(\frac{G}{g}\), where \(G\) is the universal gravitational constant and \(g\) is the acceleration due to gravity, we will follow these steps: ### Step 1: Identify the units of \(G\) and \(g\) 1. **Unit of \(G\)**: The universal gravitational constant \(G\) has the unit of \(\text{N m}^2/\text{kg}^2\) (Newton meter squared per kilogram squared). - 1 Newton (N) = 1 kg m/s², so the unit of \(G\) can be expressed as: \[ G = \frac{\text{kg} \cdot \text{m}^2}{\text{kg}^2} = \frac{\text{m}^2}{\text{kg} \cdot \text{s}^2} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • GRAVITATION

    DC PANDEY|Exercise Check Point 10.3|15 Videos
  • GRAVITATION

    DC PANDEY|Exercise Check Point 10.4|10 Videos
  • GRAVITATION

    DC PANDEY|Exercise Check Point 10.1|20 Videos
  • GENERAL PHYSICS

    DC PANDEY|Exercise INTEGER_TYPE|2 Videos
  • KINEMATICS

    DC PANDEY|Exercise INTEGER_TYPE|11 Videos

Similar Questions

Explore conceptually related problems

Defind G (universal gravitational constant.)

Define G (universal gravitational constant).

Knowledge Check

  • If G is the universal constant of gravitation and g is the acceleration due to gravity, then the dimensions of (G)/(g) are

    A
    `L^()M^(1)T^(0)`
    B
    `L^(2)M^(-1)T^(0)`
    C
    `L^(-2)M^(1)T^(2)`
    D
    `L^(3)M^(-2)T^(1)`
  • The value of universal gravitational constant 'G' is

    A
    `6.67 xx 10^(11) Nm^2 // Kg^2`
    B
    `6.67 xx 10^(-11) Nm^2 //Kg^2`
    C
    `6.67 xx 10^(18) Nm^2 // Kg^2`
    D
    `6.67 xx 10^(-18) Nm^2 // Kg^2`
  • The C.G.S. unit of universal gravitational constant is

    A
    `dy"ne"cm^2//g^2`
    B
    `dy"ne"g^2//cm^2`
    C
    `dy"ne"^2cm//g`
    D
    `g^2//dy"ne"cm^2`
  • Similar Questions

    Explore conceptually related problems

    Why G is known as universal gravitational constant?

    Distinguish between Gravitational constant (G) and acceleration due to gravtiy (g).

    Why is G called the universal gravitational constant ?

    Gravitational constant : scalar quantity : : acceleration due to gravity : ______ .

    The SI unit of the universal gravitational constant G is