Home
Class 11
PHYSICS
A planet of mass m revolves in elliptica...

A planet of mass `m` revolves in elliptical orbit around the sun of mass `M` so that its maximum and minimum distance from the sun equal to `r_(a)` and `r_(p)` respectively. Find the angular momentum of this planet relative to the sun.

A

`msqrt((2GMr_(p)r_(a))/((r_(p)+r_(a))))`

B

`msqrt((4GMr_(p)r_(a))/((r_(p)+r_(a))))`

C

`m sqrt((GMr_(p)r_(a))/((r_(p)+r_(a))))`

D

`m sqrt((GMr_(p)r_(a))/(2(r_(p)+r_(a))))`

Text Solution

Verified by Experts

The correct Answer is:
A

Using conservation of angular momentum,
`mv_(p)r_(p)=mv_(a)r_(a)`
As velocities are perpendicular to radius vectors at apogee and perigee
`rArr v_(p)r_(p)=v_(a)r_(a)`
Using conservation of energy,
`-(GMm)/(r_(p))+(1)/(2)mv_(p)^(2)=(-GMm)/(r_(a))+(1)/(2)mv_(a)^(2)`
By solving, the above equations,
`v_(P)=sqrt((2GMr_(a))/(r_(p)(r_(p)+r_(a))))rArr L=mv_(p)r_(p)=msqrt((2GMr_(p)r_(a))/((r_(p)+r_(a))))`.
Promotional Banner

Topper's Solved these Questions

  • GRAVITATION

    DC PANDEY|Exercise (B) Chapter Exercises|31 Videos
  • GRAVITATION

    DC PANDEY|Exercise (C) Chapter Exercises|45 Videos
  • GRAVITATION

    DC PANDEY|Exercise Check Point 10.6|20 Videos
  • GENERAL PHYSICS

    DC PANDEY|Exercise INTEGER_TYPE|2 Videos
  • KINEMATICS

    DC PANDEY|Exercise INTEGER_TYPE|11 Videos

Similar Questions

Explore conceptually related problems

A planet of mass m moves along an ellipse around the sun so that its maximum and minimum distance from the sun are equal to r_(1) and r_(2) respectively. Find the angular momentum of this planet relative to the centre of the sun. mass of the sun is M .

A planet of mass m moves along an ellipse around the Sun so that its maximum and minimum distances from the Sun are equal to r_1 and r_2 respectively. Find the angular momentum M of this planet relative to the centre of the Sun.

A planet of mass m moves along an ellipse around the sum of mass M so that its maximum and minimum distances from sum are a and b respectively. Prove that the angular momentum L of this planet relative to the centre of the sun is L=msqrt((2GGMab)/((a+b)))

A planet of mass moves alng an ellipes around the sun so that its maximum distance from the sum are equal to r_(1) and r_(2) respectively . Find the angular momenture L of this planet relative to the centre of the sun. [Hint :L Rember that at the maximum and minimum distance velocity is perpendicular to tthe position vectors of the planet . Apply the princples of conservation of angula r momenture and energy .]

A comet of mass m moves in a highly elliptical orbit around the sun of mass M the maximum and minium distacne of the comet from the centre of the sun are r_(1) and r_(2) respectively the magnitude of angular momentum of the comet with respect to the centre of sun is

A planet of mass m is moving in an elliptical orbit about the sun (mass of sun = M). The maximum and minimum distances of the planet from the sun are r_(1) and r_(2) respectively. The period of revolution of the planet wil be proportional to :

A planet of mass m moves around the Sun of mass Min an elliptical orbit. The maximum and minimum distance of the planet from the Sun are r_(1) and r_(2) , respectively. Find the relation between the time period of the planet in terms of r_(1) and r_(2) .

A planet revolves in elliptical orbit around the sun. (see figure). The linear speed of the planet will be maximum at

A planet of small mass m moves around the sun of mass M along an elliptrical orbit such that its minimum and maximum distance from sun are r and R respectively. Its period of revolution will be:

A planet of mass m is moving in an elliptical orbit around the sun of mass M . The semi major axis of its orbit is a, eccentricity is e . Find speed of planet V_(1) at perihelion P

DC PANDEY-GRAVITATION-(A) Chapter Exercises
  1. Four equal masses (each of mass M) are placed at the corners of a squa...

    Text Solution

    |

  2. Energy of a satellite in circular orbit is E(0). The energy required t...

    Text Solution

    |

  3. Pertaining to two planets, the ratio of escape velocities from respect...

    Text Solution

    |

  4. An object is released from a height twice the radius of the earth on t...

    Text Solution

    |

  5. A planet of mass m revolves in elliptical orbit around the sun of mass...

    Text Solution

    |

  6. The magnitude of the gravitational field at distance r(1) and r(2) fro...

    Text Solution

    |

  7. Two particles of mass m and M are initialljy at rest at infinite dista...

    Text Solution

    |

  8. The ratio of energy required to raise a satellite to a height h above ...

    Text Solution

    |

  9. A small body of superdense material, whose mass is twice the mass of t...

    Text Solution

    |

  10. Let E be the energy required to raise a satellite to height h above ea...

    Text Solution

    |

  11. A satellite is revolving round the earth with orbital speed v(0) if it...

    Text Solution

    |

  12. Four particles, each of mass M and equidistant from each other, move a...

    Text Solution

    |

  13. Three particle each of mass m, are located at the vertices of an equil...

    Text Solution

    |

  14. Three point masses each of mass m rotate in a circle of radius r with ...

    Text Solution

    |

  15. Two identical thin rings each of radius R are coaxially placed at a di...

    Text Solution

    |

  16. A solid sphere of mass M and radius R has a spherical cavity of radius...

    Text Solution

    |

  17. A point P(R sqrt(3),0,0) lies on the axis of a ring of mass M and radi...

    Text Solution

    |

  18. A mass m is at a distance a from one end of a uniform rod of length l ...

    Text Solution

    |

  19. A solid sphere of uniform density and radius R applies a gravitational...

    Text Solution

    |

  20. Suppose a vertical tunnel is dug along the diameter of earth , which i...

    Text Solution

    |