Home
Class 12
MATHS
Choose the correct answer. The value of ...

Choose the correct answer. The value of `int_0^(pi/2) log((4+3sinx)/(4+3cosx))dx`

A

`2`

B

`3/4`

C

`0`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x}\right) dx \), we can use a symmetry property of definite integrals. ### Step-by-step Solution: 1. **Define the Integral:** Let \( I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x}\right) dx \). 2. **Use the Property of Definite Integrals:** We can use the property that \( \int_0^{a} f(x) dx = \int_0^{a} f(a - x) dx \). Here, we set \( a = \frac{\pi}{2} \): \[ I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin\left(\frac{\pi}{2} - x\right)}{4 + 3 \cos\left(\frac{\pi}{2} - x\right)}\right) dx \] 3. **Simplify the Expression:** Recall that \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \). Thus, we have: \[ I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \cos x}{4 + 3 \sin x}\right) dx \] 4. **Combine the Two Integrals:** Now we can add the two expressions for \( I \): \[ 2I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x}\right) dx + \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \cos x}{4 + 3 \sin x}\right) dx \] 5. **Use Logarithmic Properties:** Using the property \( \log a + \log b = \log(ab) \): \[ 2I = \int_0^{\frac{\pi}{2}} \log\left(\frac{(4 + 3 \sin x)(4 + 3 \cos x)}{(4 + 3 \cos x)(4 + 3 \sin x)}\right) dx \] This simplifies to: \[ 2I = \int_0^{\frac{\pi}{2}} \log(1) dx \] 6. **Evaluate the Integral:** Since \( \log(1) = 0 \): \[ 2I = \int_0^{\frac{\pi}{2}} 0 \, dx = 0 \] 7. **Conclusion:** Thus, we have: \[ I = 0 \] ### Final Answer: The value of the integral \( \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x}\right) dx \) is \( 0 \).

To solve the integral \( I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x}\right) dx \), we can use a symmetry property of definite integrals. ### Step-by-step Solution: 1. **Define the Integral:** Let \( I = \int_0^{\frac{\pi}{2}} \log\left(\frac{4 + 3 \sin x}{4 + 3 \cos x}\right) dx \). 2. **Use the Property of Definite Integrals:** ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.9|22 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.6|24 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi//2)lot((4+3sinx)/(4+3cosx))dx is

The value of int_0^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is:

The value of int_(0)^(pi//2) log (sinx) dx is

Evaluate: int_0^(pi/2) ((x-pi/4)^2 sinx)/(sinx+cosx)dx

int_0^(pi/2) cosx/(1+sinx)dx

int_(0)^(pi//2)(sqrt(sinx)cosx)^(3)dx=?

Evaluate : int_(0)^(pi//2)Log ((5+3cosx)/(5+3sin x))dx

Evaluate int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx