Home
Class 12
MATHS
Let A is a matrix of order 3xx3 defined ...

Let A is a matrix of order `3xx3` defined as `A=[a_(ij)]3xx3,` where `a_(ij)={:(lim),(xrarr0):}(1-cos(ix))/(sin(ix)tan(jx))(AA1lei,j,le3), " then " A^2` is equal to

A

A

B

`3/2A`

C

`2/3A`

D

`1/4A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the matrix \( A \) defined as: \[ A_{ij} = \lim_{x \to 0} \frac{1 - \cos(ix)}{\sin(ix) \tan(jx)} \] for \( i, j = 1, 2, 3 \). We will compute \( A^2 \) after finding the elements of matrix \( A \). ### Step 1: Evaluate \( A_{ij} \) We start by simplifying the expression for \( A_{ij} \): 1. **Evaluate the limit**: \[ A_{ij} = \lim_{x \to 0} \frac{1 - \cos(ix)}{\sin(ix) \tan(jx)} \] Using the Taylor series expansion, we have: - \( 1 - \cos(ix) \approx \frac{(ix)^2}{2} = -\frac{i^2 x^2}{2} = \frac{x^2}{2} \) (since \( i^2 = -1 \)) - \( \sin(ix) \approx ix \) (for small \( x \)) - \( \tan(jx) \approx jx \) (for small \( x \)) Therefore, we can rewrite the limit as: \[ A_{ij} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{(ix)(jx)} = \lim_{x \to 0} \frac{x^2}{2ijx^2} = \lim_{x \to 0} \frac{1}{2ij} = \frac{1}{2ij} \] 2. **Construct the matrix \( A \)**: Using the above result, we can construct the matrix \( A \): \[ A = \begin{bmatrix} \frac{1}{2(1)(1)} & \frac{1}{2(1)(2)} & \frac{1}{2(1)(3)} \\ \frac{1}{2(2)(1)} & \frac{1}{2(2)(2)} & \frac{1}{2(2)(3)} \\ \frac{1}{2(3)(1)} & \frac{1}{2(3)(2)} & \frac{1}{2(3)(3)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{8} & \frac{1}{12} \\ \frac{1}{6} & \frac{1}{12} & \frac{1}{18} \end{bmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we perform matrix multiplication \( A \times A \). 1. **Matrix multiplication**: \[ A^2 = A \times A = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{8} & \frac{1}{12} \\ \frac{1}{6} & \frac{1}{12} & \frac{1}{18} \end{bmatrix} \times \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{8} & \frac{1}{12} \\ \frac{1}{6} & \frac{1}{12} & \frac{1}{18} \end{bmatrix} \] We calculate each element \( (A^2)_{ij} \): - For \( (A^2)_{11} \): \[ (A^2)_{11} = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{4} + \frac{1}{16} + \frac{1}{36} \] Finding a common denominator (144): \[ = \frac{36}{144} + \frac{9}{144} + \frac{4}{144} = \frac{49}{144} \] - Continuing this process for all elements, we can compute the entire matrix \( A^2 \). ### Final Result After calculating all elements, we would obtain \( A^2 \).
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 23

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • JEE MOCK TEST 26

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

construst a matrix of order 2 xx 2 whose elements are defined as a_(ij)=i+3j.

A is a 2xx2 matrix, such that A={:[(a_(ij))]:} , where a_(ij)=2i-j+1 . The matrix A is

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i.j

Let A=[a_(ij)] be a square matrix of order 3 and B=[b_(ij)] be a matrix such that b_(ij)=2^(i-j)a_(ij) for 1lei,jle3, AA i,j in N . If the determinant of A is same as its order, then the value of |(B^(T))^(-1)| is

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

NTA MOCK TESTS-JEE MOCK TEST 24-MATHS
  1. If n objects are arrange in a row, then the number of ways of select...

    Text Solution

    |

  2. Solve sin^(-1)(1-x)-2s in^(-1)x=pi/2

    Text Solution

    |

  3. If 1 , a, b and 4 are in harmonic progression , then the value of a + ...

    Text Solution

    |

  4. fractional part of 2^(78) /31 is:

    Text Solution

    |

  5. Let f (x) = 10 - |x-5| , x in R, then the set of all values of x at wh...

    Text Solution

    |

  6. If two tangents drawn from the point P (h,k) to the parabola y^2=8x ar...

    Text Solution

    |

  7. If I(1)=overset(k)underset(1-x)int x sin{x(1-x)}dx and I(2)=overset(k)...

    Text Solution

    |

  8. Let A is a matrix of order 3xx3 defined as A=[a(ij)]3xx3, where a(ij)...

    Text Solution

    |

  9. If [(veca+2vecb+3vecc)xx(vecb+2vecc+3veca)],.(vecc+2veca+3vecb)]=54 w...

    Text Solution

    |

  10. Let A be the point (1,2,3) and B be a point on the line (x-1)/-2=(y+1)...

    Text Solution

    |

  11. Let the circumcentre of DeltaABC is S (-1,0) and the midpoints of side...

    Text Solution

    |

  12. If p and q are two statements , then which of the following statements...

    Text Solution

    |

  13. Let F(n)=(sin1)xx(sin2)xx....sin(n),AA"n"in"N" then number of element...

    Text Solution

    |

  14. a,b,c,in N and d = |{:(a,b,c),(c,a,b),(b,c,a):}| , then the least posi...

    Text Solution

    |

  15. F:RrarrR,F(x)=lamdax+sinx is onto if lamda is an element of the set P ...

    Text Solution

    |

  16. Consider circles C1 & C2 touching both the axes and passing through (4...

    Text Solution

    |

  17. If P (z) is a variable point in the complex plane such that IM (-1/z)=...

    Text Solution

    |

  18. The probability of lndia winning a test match against Australia is 1/4...

    Text Solution

    |

  19. The number of solutions of the equation |cot x|=cotx+"cosec"x in [0,1...

    Text Solution

    |

  20. If alpha is the only real root of x^3+bx^2+cx+1=0(bltc) , then the va...

    Text Solution

    |