Home
Class 12
MATHS
Given s = 1 + q + q^2+. . . . + q^n, Sn ...

Given `s = 1 + q + q^2+. . . . + q^n, S_n = 1 +(q+1 /2)+(q+1 /2)^2+........+(q+1 /2)^n` then prove that `"^( n+1)C_1``+``"^( n+1)C_2``s_1+`.......,+`"^( n+1)C_(n+1)``s_n` =`2^ns_n`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - I) ( Previous Year )|12 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - II) ( Previous Year )|7 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - II) (Multiple Correct ) (MIXED PROBLEMS )|3 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos

Similar Questions

Explore conceptually related problems

Given s=1+q+q^(2)+...+q^(n),S_(n)=1+(q+(1)/(2))+(q+(1)/(2))^(2)+......+(q+(1)/(2))^(n) then prove that ^(n+1)C_(1)+^(n+1)C_(2)s_(1)+......,+^(n+1)C_(n+1)s_(n)=2^(n)s_(n)

Given,s_(n)=1+q+q^(2)+....+q^(n),S_(n)=1+(q+1)/(2)+((q+1)/(2))^(2)+...+((q+1)/(2))^(n),q!=1 prove that ^(n+1)C_(1)+^(n+1)C_(2)s_(1)+^(n+1)C_(3)s_(2)+......+^(n+1)C_(n+1)s_(n)=2^(n)S_(n)

Let S_k=1+q+q^2+...+q^k and T_k=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^k q!=1 then prove that sum_(r=1)^(n+1) ^(n+1)C_rS_(r-1)=2^ nT_n

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

Prove that C_0+(C_1)/(2)+(C_2)/(3)+....+(C_n)/(n+1)=(2^(n+1)-1)/(n+1)

If n in N, n > 1 , then value of E= a - ""^(n)C_(1) (a-1) + ""^(n)C_(2) (a -2)+ ... + (- 1)^(n) (a-n) (""^(n)C_(n)) is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " + 3^(2) *C_(3) + …+ n^(2) *C_(n) 1^(2)*C_(1) + 2^(2) *C_(2) = n(n+1)* 2^(n-2) .

Delta[[ Prove that ,, 11,1,1nC1,(n+1)C1,(n+2)C1(n+1)C2,(n+2)C2,(n+3)C2]]=1

MOTION-BINOMIAL THEOREM -Exercise -3 ( Subjective )
  1. Find numerically the greatest term in the expansion of (3 - 5x)^(n...

    Text Solution

    |

  2. Prove that : .^(n-1)C(r)+.^(n-2)C(r)+.^(n-3)C(r)+.........+.^(r)C(r)...

    Text Solution

    |

  3. Given s = 1 + q + q^2+. . . . + q^n, Sn = 1 +(q+1 /2)+(q+1 /2)^2+........

    Text Solution

    |

  4. (C(0)+C(1))(C(1)+C(2))(C(2)+C(3))...(C(n-1)+C(n))=(C(0).C(1).C(2)........

    Text Solution

    |

  5. If P(n) denotes the product of all the coefficients in the expansion o...

    Text Solution

    |

  6. Prove that (i) C(1)+2C(2)+3C(3)+……+nC(n)=n.2^(n+1) (ii) C(0)+(C(1)...

    Text Solution

    |

  7. 2.C(0)+(2^(2).C(1))/(2)+(2^(3).C(2))/(3)+(2^(4).C(3))/(4)+......+(2^(n...

    Text Solution

    |

  8. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + C(3) x^(3) + … + C(n) x...

    Text Solution

    |

  9. (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + C(3) x^(3) + … + C(n) x^(n)...

    Text Solution

    |

  10. prove that : C0^2+3C1^@+5C2^2+...+(2n+1)Cn^2=((n+1)2n!)/(n!)^2

    Text Solution

    |

  11. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  12. Prove that sqrt(C1) +sqrt(C2) +sqrt(C3)+...+sqrt(Cn)le 2^(n-1) +(n-1)/...

    Text Solution

    |

  13. If C(r ) = (n!)/(r!(n - r)!), then prove that sqrt(C(1)) + sqrt(C(2)...

    Text Solution

    |

  14. Sum of all the digits of the coefficient of x^(5) in the expansion of ...

    Text Solution

    |

  15. Find the coefficient of x^(4) in the expansion of (1+x+x^(2)+x^(3))^(1...

    Text Solution

    |

  16. Find the coefficients of x^(4) in the expansions of (2 - x + 3x^(2...

    Text Solution

    |

  17. Let a = (72!)/(36!)^2-1 , then (A) a is odd (B) a is divisible by 7...

    Text Solution

    |

  18. find the sum of the series sum(r=0)^n(-1)^r *"^nCr[1/(2^r)+(3^r)/(2^(...

    Text Solution

    |

  19. Given that (1+x+x^2)^n=a0+a1x+a2x^2+........+a(2n)x^(2n) find the val...

    Text Solution

    |

  20. Given that (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+......+a(2n)x^(2n), f...

    Text Solution

    |