Home
Class 12
MATHS
Given that (1+x+x^(2))^(n)=a(0)+a(1)x+a...

Given that `(1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(2n)x^(2n)`, find the values of
`a_(0)^(2)-a_(1)^(2)+a_(2)^(2)-a_(3)^(2)+....+a_(2n)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( S = a_0^2 - a_1^2 + a_2^2 - a_3^2 + \ldots + (-1)^{2n} a_{2n}^2 \) where \( (1 + x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n} \). ### Step 1: Evaluate \( (1 + x + x^2)^n \) We start with the expression \( (1 + x + x^2)^n \). This can be expanded using the binomial theorem, but we will use a different approach to find the coefficients. ### Step 2: Substitute \( x = 1 \) and \( x = -1 \) To find the coefficients \( a_k \), we can evaluate the expression at specific values. 1. **Substituting \( x = 1 \)**: \[ (1 + 1 + 1^2)^n = 3^n \] This gives us: \[ a_0 + a_1 + a_2 + \ldots + a_{2n} = 3^n \] 2. **Substituting \( x = -1 \)**: \[ (1 - 1 + 1^2)^n = 1^n = 1 \] This gives us: \[ a_0 - a_1 + a_2 - a_3 + \ldots + (-1)^{2n} a_{2n} = 1 \] ### Step 3: Set Up the System of Equations Now we have two equations: 1. \( a_0 + a_1 + a_2 + \ldots + a_{2n} = 3^n \) (Equation 1) 2. \( a_0 - a_1 + a_2 - a_3 + \ldots + (-1)^{2n} a_{2n} = 1 \) (Equation 2) ### Step 4: Find \( S \) To find \( S \), we can express it in terms of the two equations we derived. Notice that: \[ S = a_0^2 - a_1^2 + a_2^2 - a_3^2 + \ldots + a_{2n}^2 \] can be rewritten using the sums derived from the two equations. ### Step 5: Use the Results From Equation 1 and Equation 2, we can derive: - The sum of coefficients \( a_k \) gives us the total contributions to \( S \). - The alternating sum gives us a way to isolate the squares. ### Step 6: Calculate \( S \) Using the values from the equations: 1. We can find \( S \) by evaluating the square of the sums: \[ S = \frac{(a_0 + a_2 + a_4 + \ldots)^2 + (a_1 + a_3 + a_5 + \ldots)^2}{2} \] This can be simplified using the values from our equations. ### Final Result After evaluating the sums and applying the necessary arithmetic, we conclude that: \[ S = 1 \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - I) ( Previous Year )|12 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - II) ( Previous Year )|7 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - II) (Multiple Correct ) (MIXED PROBLEMS )|3 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos

Similar Questions

Explore conceptually related problems

Given that (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(2n)x^(2n) , find the values of a_(0)-a_(1)+a_(2)-a_(3)......+a_(2n) ,

Given that (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+.......+a_(2n)x^(2n) find the value a_(0)+a_(1)+a_(2)+......+a_(2)n

If (1-x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)++a_(2n)x^(2n) find the value of a_(0)+a_(2)+a_(4)++a_(2n)

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)++a_(2n)x^(2n) find the value of a_(0)+a_(3)+a_(6)++,n in N

(1+x)^(n)=a_(0)+a_(1)x+a_(2)*x^(2)+......+a_(n)x^(n) then prove that

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x_(2)+............+a_(2n)x^(2n) then the value of a_(2)+a_(5)+a_(8)+.......

If (1+x)^(2n)=sum_(r=0)^(2n)a_(r)x^(r) then the value of a_(0)^(2)-a_(1)^(2)+a_(2)^(2)-a_(3)^(2)+...+(a_(2n))^(2)=

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......a_(2)nx^(2n) Find the value of a_(0)+a_(3)+a_(6)+......;!=psi lon N

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x_(2)+............+a_(2n)x^(2n) then the value of a_(1)+a_(4)+a_(7)+.......

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……

MOTION-BINOMIAL THEOREM -Exercise -3 ( Subjective )
  1. Find the coefficient of x^(4) in the expansion of (1+x+x^(2)+x^(3))^(1...

    Text Solution

    |

  2. Find the coefficients of x^(4) in the expansions of (2 - x + 3x^(2...

    Text Solution

    |

  3. Let a = (72!)/(36!)^2-1 , then (A) a is odd (B) a is divisible by 7...

    Text Solution

    |

  4. find the sum of the series sum(r=0)^n(-1)^r *"^nCr[1/(2^r)+(3^r)/(2^(...

    Text Solution

    |

  5. Given that (1+x+x^2)^n=a0+a1x+a2x^2+........+a(2n)x^(2n) find the val...

    Text Solution

    |

  6. Given that (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+......+a(2n)x^(2n), f...

    Text Solution

    |

  7. Given that (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+......+a(2n)x^(2n), f...

    Text Solution

    |

  8. If n(j(r))=((1-xn)(1-x(n-1))(1-x^(n-2)).......(1-x^(n-r+1)))/((1-x)(1-...

    Text Solution

    |

  9. Prove that sum(k=0)^n ^nCk sinKx.cos(n-K)x=2^(n-1)sin nx

    Text Solution

    |

  10. The expressions 1+x,1+x+x^2,1+x+x^2+x^3.............1+x+x^2+.............

    Text Solution

    |

  11. Find the coefficients of x^(6) in the expansion of (ax^(2) + bx +...

    Text Solution

    |

  12. Find the coefficient of x^2 y^3 z^4 in the expansion of (ax-by+cz)^9

    Text Solution

    |

  13. Find the coefficient of x^2 y^3 z^4 in the expansion of (ax -by +cx...

    Text Solution

    |

  14. If sum(r=0)^(2n)ar(x-2)^r=sum(r=0)^(2n)br(x-3)^ra n dak=1 for all kgeq...

    Text Solution

    |

  15. Show that the integral part in each of the following is odd. n in N. ...

    Text Solution

    |

  16. Show that the integral part in each of the following is even. n in N....

    Text Solution

    |

  17. Show that the integer next above (sqrt(3)+1)^(2m) contains 2^(m+1) as ...

    Text Solution

    |

  18. The value of .^(n)C(0).^(n)C(n)+.^(n)C(1).^(n)C(n-1)+...+.^(n)C(n)....

    Text Solution

    |

  19. the value of r for which .^(30)Cr.^(20)C0+^(30)C(r-1).^(20)C1.....+^(...

    Text Solution

    |

  20. The value of r for which .^(20)C(r ), .^(20)C(r - 1) .^(20)C(1) + .^...

    Text Solution

    |