Home
Class 12
MATHS
The value of .^(n)C(0).^(n)C(n)+.^(n)...

The value of `.^(n)C_(0).^(n)C_(n)+.^(n)C_(1).^(n)C_(n-1)+...+.^(n)C_(n).^(n)C_(0)` is

A

`.^(2n)C_(n-1)`

B

`.^(2n)C_(n)`

C

`.^(2n)C_(n+1)`

D

`.^(2n)C_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} \] ### Step-by-step Solution: 1. **Understanding the Binomial Coefficient:** The binomial coefficient \(\binom{n}{k}\) represents the number of ways to choose \(k\) elements from a set of \(n\) elements. A key property of binomial coefficients is that: \[ \binom{n}{k} = \binom{n}{n-k} \] This means that \(\binom{n}{k}\) and \(\binom{n}{n-k}\) are equal. 2. **Rewriting the Expression:** Using the property mentioned above, we can rewrite the expression as: \[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k} \] This simplifies to: \[ \sum_{k=0}^{n} \binom{n}{k}^2 \] 3. **Using the Binomial Theorem:** We know from the binomial theorem that: \[ (1+x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] If we set \(x = 1\), we get: \[ (1+1)^n = 2^n = \sum_{k=0}^{n} \binom{n}{k} \] 4. **Finding the Sum of Squares of Binomial Coefficients:** To find \(\sum_{k=0}^{n} \binom{n}{k}^2\), we can use the identity: \[ \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n} \] This identity states that the sum of the squares of the binomial coefficients for a given \(n\) is equal to the binomial coefficient of \(2n\) choose \(n\). 5. **Final Calculation:** Thus, we have: \[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n} \] ### Conclusion: The value of the expression is: \[ \binom{2n}{n} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - I) ( Previous Year )|12 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise -4 (Level - II) ( Previous Year )|7 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - II) (Multiple Correct ) (MIXED PROBLEMS )|3 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos

Similar Questions

Explore conceptually related problems

The value of |111^(n)C_(1)^(n+2)C_(1)^(n+4)C_(1)^(n)C_(2)^(n+2)C_(2)^(n+4)C_(2)| is

The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

Prove that : ""^(n)C_(0).""^(2n)C_(n)-""^(n)C_(1).""^(2n-2)Cn_(n)+""^(n)C_(2).""^(2n-4)Cn_(n)+......=2^n

If n is a positvie integers, the value of E=(2n+1).^(n)C_(0)+(2n-1).^(n)C_(1)+(2n-3)^(n)C_(2)+………+1. ^(n)C_(n)2 is

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

MOTION-BINOMIAL THEOREM -Exercise -3 ( Subjective )
  1. Find the coefficient of x^(4) in the expansion of (1+x+x^(2)+x^(3))^(1...

    Text Solution

    |

  2. Find the coefficients of x^(4) in the expansions of (2 - x + 3x^(2...

    Text Solution

    |

  3. Let a = (72!)/(36!)^2-1 , then (A) a is odd (B) a is divisible by 7...

    Text Solution

    |

  4. find the sum of the series sum(r=0)^n(-1)^r *"^nCr[1/(2^r)+(3^r)/(2^(...

    Text Solution

    |

  5. Given that (1+x+x^2)^n=a0+a1x+a2x^2+........+a(2n)x^(2n) find the val...

    Text Solution

    |

  6. Given that (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+......+a(2n)x^(2n), f...

    Text Solution

    |

  7. Given that (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+......+a(2n)x^(2n), f...

    Text Solution

    |

  8. If n(j(r))=((1-xn)(1-x(n-1))(1-x^(n-2)).......(1-x^(n-r+1)))/((1-x)(1-...

    Text Solution

    |

  9. Prove that sum(k=0)^n ^nCk sinKx.cos(n-K)x=2^(n-1)sin nx

    Text Solution

    |

  10. The expressions 1+x,1+x+x^2,1+x+x^2+x^3.............1+x+x^2+.............

    Text Solution

    |

  11. Find the coefficients of x^(6) in the expansion of (ax^(2) + bx +...

    Text Solution

    |

  12. Find the coefficient of x^2 y^3 z^4 in the expansion of (ax-by+cz)^9

    Text Solution

    |

  13. Find the coefficient of x^2 y^3 z^4 in the expansion of (ax -by +cx...

    Text Solution

    |

  14. If sum(r=0)^(2n)ar(x-2)^r=sum(r=0)^(2n)br(x-3)^ra n dak=1 for all kgeq...

    Text Solution

    |

  15. Show that the integral part in each of the following is odd. n in N. ...

    Text Solution

    |

  16. Show that the integral part in each of the following is even. n in N....

    Text Solution

    |

  17. Show that the integer next above (sqrt(3)+1)^(2m) contains 2^(m+1) as ...

    Text Solution

    |

  18. The value of .^(n)C(0).^(n)C(n)+.^(n)C(1).^(n)C(n-1)+...+.^(n)C(n)....

    Text Solution

    |

  19. the value of r for which .^(30)Cr.^(20)C0+^(30)C(r-1).^(20)C1.....+^(...

    Text Solution

    |

  20. The value of r for which .^(20)C(r ), .^(20)C(r - 1) .^(20)C(1) + .^...

    Text Solution

    |