Home
Class 12
MATHS
Determine a & b so that f is continuous ...

Determine a & b so that f is continuous at `x = pi/2`
whre `f(x) = [{:((1-sin^(3)x)/(3 cos^(2)x), if, x lt pi/2),(a, if, x=pi/2),((b(1-sinx))/(pi-2x)^(2), if, x gt pi/2):}`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) so that the function \( f \) is continuous at \( x = \frac{\pi}{2} \), we need to ensure that: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = f\left(\frac{\pi}{2}\right) = \lim_{x \to \frac{\pi}{2}^+} f(x) \] Given the function: \[ f(x) = \begin{cases} \frac{1 - \sin^3 x}{3 \cos^2 x} & \text{if } x < \frac{\pi}{2} \\ a & \text{if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x)^2} & \text{if } x > \frac{\pi}{2} \end{cases} \] ### Step 1: Calculate \( \lim_{x \to \frac{\pi}{2}^-} f(x) \) We need to evaluate: \[ \lim_{x \to \frac{\pi}{2}^-} \frac{1 - \sin^3 x}{3 \cos^2 x} \] Substituting \( x = \frac{\pi}{2} \): \[ 1 - \sin^3\left(\frac{\pi}{2}\right) = 1 - 1 = 0 \] \[ 3 \cos^2\left(\frac{\pi}{2}\right) = 3 \cdot 0 = 0 \] This gives us a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - Numerator: \( \frac{d}{dx}(1 - \sin^3 x) = -3 \sin^2 x \cos x \) - Denominator: \( \frac{d}{dx}(3 \cos^2 x) = -6 \cos x \sin x \) Now we have: \[ \lim_{x \to \frac{\pi}{2}^-} \frac{-3 \sin^2 x \cos x}{-6 \cos x \sin x} = \lim_{x \to \frac{\pi}{2}^-} \frac{3 \sin x}{2} \] Substituting \( x = \frac{\pi}{2} \): \[ \lim_{x \to \frac{\pi}{2}^-} \frac{3 \sin\left(\frac{\pi}{2}\right)}{2} = \frac{3 \cdot 1}{2} = \frac{3}{2} \] Thus, we have: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \frac{3}{2} \] ### Step 3: Set \( f\left(\frac{\pi}{2}\right) \) From the definition of \( f \): \[ f\left(\frac{\pi}{2}\right) = a \] ### Step 4: Set the limits equal For continuity at \( x = \frac{\pi}{2} \): \[ a = \frac{3}{2} \] ### Step 5: Calculate \( \lim_{x \to \frac{\pi}{2}^+} f(x) \) Now we evaluate: \[ \lim_{x \to \frac{\pi}{2}^+} \frac{b(1 - \sin x)}{(\pi - 2x)^2} \] Substituting \( x = \frac{\pi}{2} \): \[ 1 - \sin\left(\frac{\pi}{2}\right) = 1 - 1 = 0 \] \[ (\pi - 2 \cdot \frac{\pi}{2})^2 = 0^2 = 0 \] This also gives us a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 6: Apply L'Hôpital's Rule Again Differentiate the numerator and denominator: - Numerator: \( \frac{d}{dx}(b(1 - \sin x)) = -b \cos x \) - Denominator: \( \frac{d}{dx}((\pi - 2x)^2) = -4(\pi - 2x) \) Now we have: \[ \lim_{x \to \frac{\pi}{2}^+} \frac{-b \cos x}{-4(\pi - 2x)} = \lim_{x \to \frac{\pi}{2}^+} \frac{b \cos x}{4(\pi - 2x)} \] Substituting \( x = \frac{\pi}{2} \): \[ \cos\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \pi - 2\left(\frac{\pi}{2}\right) = 0 \] Again, we have a \( \frac{0}{0} \) form. We apply L'Hôpital's Rule again. ### Step 7: Apply L'Hôpital's Rule Again Differentiate again: - Numerator: \( \frac{d}{dx}(b \cos x) = -b \sin x \) - Denominator: \( \frac{d}{dx}(-4(\pi - 2x)) = 8 \) Now we have: \[ \lim_{x \to \frac{\pi}{2}^+} \frac{-b \sin x}{8} \] Substituting \( x = \frac{\pi}{2} \): \[ \lim_{x \to \frac{\pi}{2}^+} \frac{-b \cdot 1}{8} = -\frac{b}{8} \] ### Step 8: Set the limits equal For continuity: \[ -\frac{b}{8} = a \] Substituting \( a = \frac{3}{2} \): \[ -\frac{b}{8} = \frac{3}{2} \] ### Step 9: Solve for \( b \) Multiplying both sides by -8: \[ b = -12 \] ### Final Values Thus, the values of \( a \) and \( b \) that make \( f \) continuous at \( x = \frac{\pi}{2} \) are: \[ a = \frac{3}{2}, \quad b = -12 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MOTION|Exercise EXERCISE - 3 (PASSAGE BASED QUESTION (21-24))|4 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -I) PREVIOUS YEAR JEE MAIN|4 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE -2 (LEVEL -II) MIXED PROBLEMS|4 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) PREVIOUS YEAR - JEE ADVANCED|33 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)=(1-sin x)/((pi-2x)^(2)) , for x != pi/2 , then f(pi/2)=

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x=pi/2 , where f(x)=(1-sin x)/((pi/2 -x)^(2)) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)={:{((1-sinx)/(pi-2x)", for " x!= pi/2),(lambda", for " x=pi/2):} ,then lambda=

If f(x) is continuous at x=pi/2 , where f(x)=(3^(x- pi/2)-6^(x- pi/2))/(cos x) , for x != pi/2 , then f(pi/2)=

If f(x) and f'(x) are continuous at x=pi/6 , where f(x)={:{(sin 2x", if " x lt pi/6),(ax+b", if " x gt pi/6):} , then

If f(x) is continuous at x=pi/2 , where f(x)=(cos x )/(sqrt(1-sinx)) , for x!= pi/2 , then f(pi/2)=

MOTION-CONTINUITY -EXERCISE - 3
  1. If the function f(x)=(3x^2+ax+a+3)/(x^2+x-2) is continuos at x=-2 .Fin...

    Text Solution

    |

  2. Let f(x)=[(1-sinpix)/(1+cos2pix), x<1/2 and p , x=1/2 and sqrt(2x-1)...

    Text Solution

    |

  3. If g(x)=(1-a^x+x a^xloga)/(x^2*a^x), x<0 ((2a)^x-xlog(2a)-1)/(x^2), x...

    Text Solution

    |

  4. Let [x] denote the greatest integer function & f(x) be defined in a ne...

    Text Solution

    |

  5. Let f(x) = [{:((pi/2.sin^(-1)(1-x^(2))sin^(-1(1-{x})))/(sqrt(2((x)-(x)...

    Text Solution

    |

  6. Find all possible values of a and b so that f(x) is continous for all ...

    Text Solution

    |

  7. Draw the graph of the function f(x) = x - |x - x^(2)|, -1 le x le 1 an...

    Text Solution

    |

  8. Discuss the continuity of 'f' in [0, 2], where f(x) = {{:(|4x - 5|[x],...

    Text Solution

    |

  9. let f(x)=(lncosx)/{(1+x^2)^(1/4)-1} if x > 0 and f(x)=(e^(sin4x)-1)/(l...

    Text Solution

    |

  10. Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof)...

    Text Solution

    |

  11. The function f(x)= ((2+ cos x)/(x^(3) sin x)-3/x^(4)) is not defined a...

    Text Solution

    |

  12. The function f(x) = [{:((6/5)^(tan 6x)/(tan 5x), if, 0 lt x lt pi/2),(...

    Text Solution

    |

  13. Determine a & b so that f is continuous at x = pi/2 whre f(x) = [{:(...

    Text Solution

    |

  14. Determine the values of a , b , c for which the function f(x)={(sin(a+...

    Text Solution

    |

  15. If f(x) = (Sin 3x + A sin 2x + B sinx)/x^5 for x != 0is continuous a...

    Text Solution

    |

  16. A function f: RvecR is defined as f(x)=(lim)(nvecoo)(a x^2+b x+c+e^(n ...

    Text Solution

    |

  17. Given the function g(x) = sqrt(6-2x) and h(x) = 2x^(2) - 3x + a. Then ...

    Text Solution

    |

  18. f(x) = {{:((a^(sin x)-a^(tanx))/(tan x-sin x), "for",x gt 0),((ln(1+x+...

    Text Solution

    |

  19. let f(x)=x^3-x^2-3x-1 , g(x)=(x+1)aand h(x)=f(x)/g(x) where h is a rat...

    Text Solution

    |