Home
Class 12
MATHS
int (log pi - log 2 ) ^(log pi) (e ^(x))...

`int _(log pi - log 2 ) ^(log pi) (e ^(x))/(1- cos ((2)/(3)e ^(x)))dx ` is equal to

A

`sqrt3`

B

`-sqrt3`

C

`(1)/( sqrt3)`

D

`-(1)/(sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\log \pi}^{\log 2} \frac{e^x}{1 - \cos\left(\frac{2}{3} e^x\right)} \, dx, \] we can follow these steps: ### Step 1: Substitution Let \[ t = \frac{2}{3} e^x. \] Then, differentiating both sides gives us: \[ \frac{dt}{dx} = \frac{2}{3} e^x \implies dt = \frac{2}{3} e^x \, dx \implies e^x \, dx = \frac{3}{2} dt. \] ### Step 2: Change of Limits Now, we need to change the limits of integration. - When \( x = \log \pi \): \[ t = \frac{2}{3} e^{\log \pi} = \frac{2\pi}{3}. \] - When \( x = \log 2 \): \[ t = \frac{2}{3} e^{\log 2} = \frac{2 \cdot 2}{3} = \frac{4}{3}. \] Thus, the limits change from \( x: [\log \pi, \log 2] \) to \( t: \left[\frac{2\pi}{3}, \frac{4}{3}\right] \). ### Step 3: Rewrite the Integral Now we can rewrite the integral \( I \): \[ I = \int_{\frac{2\pi}{3}}^{\frac{4}{3}} \frac{\frac{3}{2} dt}{1 - \cos t}. \] ### Step 4: Factor Out Constants We can factor out the constant \( \frac{3}{2} \): \[ I = \frac{3}{2} \int_{\frac{2\pi}{3}}^{\frac{4}{3}} \frac{dt}{1 - \cos t}. \] ### Step 5: Simplifying the Denominator Using the identity \( 1 - \cos t = 2 \sin^2\left(\frac{t}{2}\right) \): \[ I = \frac{3}{2} \int_{\frac{2\pi}{3}}^{\frac{4}{3}} \frac{dt}{2 \sin^2\left(\frac{t}{2}\right)} = \frac{3}{4} \int_{\frac{2\pi}{3}}^{\frac{4}{3}} \csc^2\left(\frac{t}{2}\right) dt. \] ### Step 6: Integration of Cosecant Squared The integral of \( \csc^2 u \) is \( -\cot u \): \[ I = \frac{3}{4} \left[-\cot\left(\frac{t}{2}\right)\right]_{\frac{2\pi}{3}}^{\frac{4}{3}}. \] ### Step 7: Evaluate the Limits Now we evaluate the limits: \[ I = \frac{3}{4} \left[-\cot\left(\frac{4}{6}\right) + \cot\left(\frac{2\pi}{3}\right)\right]. \] Calculating \( \cot\left(\frac{2\pi}{3}\right) = -\frac{1}{\sqrt{3}} \) and \( \cot\left(\frac{4}{6}\right) = \cot\left(\frac{2\pi}{3}\right) = -\frac{1}{\sqrt{3}} \). Thus, \[ I = \frac{3}{4} \left[-(-\frac{1}{\sqrt{3}}) + \left(-\frac{1}{\sqrt{3}}\right)\right] = \frac{3}{4} \left[\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}}\right] = 0. \] ### Final Answer Thus, the value of the integral is \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-II)|11 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -3|55 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise ELEMENTRAY EXERCISE|47 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

The value of int_(ln pi-ln2)^(ln pi)(e^(x))/(1-cos(((2)/(3))e^(x)))dx=

int_(log sqrt(pi//2))^(log sqrt(pi))(e^(2x)sec^(2)((1)/(3)e^(2x)))dx=

int _( log 1//2 ) ^( log 2) sin { (e ^(x) -1)/( e ^(x ) +1 )}dx equals

int cos^(3)x.e^(log(sin x)) dx is equal to

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

int e^(x log a) e^(x) dx is equal to

int cos (log_e x)dx is equal to

int(e^(x)(x log x+1))/(x)dx is equal to

MOTION-DEFINITE INTEGRATION -EXERCISE -2 (LEVEL-I)
  1. The value of int (pi//4) ^(pi//3) cosec x d (sin x ) for 0 lt x lt pi...

    Text Solution

    |

  2. Find the value of : int0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denote...

    Text Solution

    |

  3. int (log pi - log 2 ) ^(log pi) (e ^(x))/(1- cos ((2)/(3)e ^(x)))dx i...

    Text Solution

    |

  4. If underset(0)overset(oo)int e^(-x^(2))dx=sqrt((pi)/(2))"then"underset...

    Text Solution

    |

  5. Let A = underset(0)overset(1)int(e^(t))/(1+t) dt, then underset(a-1)ov...

    Text Solution

    |

  6. Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0, If int(1)^(4) (3)/(x) ...

    Text Solution

    |

  7. 1/c int (a) ^(b) f ((x)/(c )) dx =

    Text Solution

    |

  8. int(5/2)^5 (sqrt((25-x^2)^3))/(x^4) dx

    Text Solution

    |

  9. If {:(f(x)=x", ...."x lt 1),(" "=x-1", ...." x ge 1","):} ...

    Text Solution

    |

  10. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  11. int (0) ^(pi) (1 + 2 cos x ) dx equal to :

    Text Solution

    |

  12. The value of int (-1) ^(3) (|x-2 |+[x]) dx is equal to (where [**] den...

    Text Solution

    |

  13. If underset(-1)overset(3//2)int|xsinpix|dx = (k)/(pi^(2)), then the va...

    Text Solution

    |

  14. int0^(10pi) |sin x| dx is

    Text Solution

    |

  15. The value of int (-1) ^(3) | 1- x ^(2) | dx is -

    Text Solution

    |

  16. rArrunderset(0)overset(oo)int[(2)/(e^(x))]dx (where [*] denotes the gr...

    Text Solution

    |

  17. int0^sqrt2 [x^2]dx

    Text Solution

    |

  18. If f (x) = int (0) ^(x) sin [2x] dx then f ( pi//2) is (where [**] de...

    Text Solution

    |

  19. f(x)=Minimum{tanx,cotx}AA x in(0,pi/2) Then int0^(pi/3)f(x)dx is equal...

    Text Solution

    |

  20. The value of int (1) ^(2) ([x ^(2) ]- [x] ^(2) dx is equal to (where [...

    Text Solution

    |