Home
Class 12
MATHS
If P = int (0) ^(oo) (x ^(2))/(1+ x ^(4)...

If `P = int _(0) ^(oo) (x ^(2))/(1+ x ^(4)) dx , Q = int _(0) ^(oo) (x dx )/(1 + x ^(4)) and R = int _(0) ^(oo) (dx )/(1+ x ^(4))` then prove that
(a) `Q = pi/4`
(b) ` P =R`
(c ) `P- sqrt2 Q + R = (-pi)/(2 sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
` int _(0) ^(1)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-I|15 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-II)|11 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(dx)/((1+x^(2))^(4))=

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx

Knowledge Check

  • int_(0)^(oo) (x)/(1-x)^(3//4)dx=

    A
    `(12)/(5)`
    B
    `(16)/(5)`
    C
    `-(16)/(5)`
    D
    none of these
  • int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

    A
    7
    B
    0
    C
    `5 log 13`
    D
    `2 log5`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

    Let u=int_(0)^(oo)(dx)/(x^(4)+7x^(2)+1) and v=int_(0)^(x)(x^(2)dx)/(x^(4)+7x^(2)+1) then

    int_(0)^(oo)(dx)/((x+r)^(3/2))

    " 8."int_(0)^(oo)(log x)/(1+x^(2))dx

    int_(0)^(oo)(x)/((1+x)(1+x^(2)))dx