Home
Class 12
MATHS
Let I (1) = int (1) ^(2) (dx )/(sqrt(1 +...

Let `I _(1) = int _(1) ^(2) (dx )/(sqrt(1 + x ^(2))) and I _(2) = int _(1) ^(2) (dx)/(x)`

A

`I _(1) gt I _(2)`

B

`I _(2) gt I _(1)`

C

`I _(1) = I_(2)`

D

`I _(1) gt 2I _(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the two definite integrals \( I_1 \) and \( I_2 \) given by: \[ I_1 = \int_{1}^{2} \frac{dx}{\sqrt{1 + x^2}} \] \[ I_2 = \int_{1}^{2} \frac{dx}{x} \] ### Step 1: Evaluate \( I_1 \) To evaluate \( I_1 \), we use the formula for the integral of \( \frac{dx}{\sqrt{a^2 + x^2}} \): \[ \int \frac{dx}{\sqrt{a^2 + x^2}} = \ln(x + \sqrt{x^2 + a^2}) + C \] In our case, \( a = 1 \). Thus, we have: \[ I_1 = \int_{1}^{2} \frac{dx}{\sqrt{1 + x^2}} = \left[ \ln(x + \sqrt{x^2 + 1}) \right]_{1}^{2} \] Calculating the limits: \[ I_1 = \ln(2 + \sqrt{2^2 + 1}) - \ln(1 + \sqrt{1^2 + 1}) \] \[ = \ln(2 + \sqrt{5}) - \ln(1 + \sqrt{2}) \] Using the property of logarithms \( \ln a - \ln b = \ln \left( \frac{a}{b} \right) \): \[ I_1 = \ln \left( \frac{2 + \sqrt{5}}{1 + \sqrt{2}} \right) \] ### Step 2: Evaluate \( I_2 \) Now, we evaluate \( I_2 \): \[ I_2 = \int_{1}^{2} \frac{dx}{x} = \left[ \ln x \right]_{1}^{2} \] Calculating the limits: \[ I_2 = \ln(2) - \ln(1) = \ln(2) - 0 = \ln(2) \] ### Step 3: Compare \( I_1 \) and \( I_2 \) Now we have: \[ I_1 = \ln \left( \frac{2 + \sqrt{5}}{1 + \sqrt{2}} \right) \] \[ I_2 = \ln(2) \] To compare \( I_1 \) and \( I_2 \), we need to check whether: \[ \frac{2 + \sqrt{5}}{1 + \sqrt{2}} < 2 \] Cross-multiplying gives: \[ 2 + \sqrt{5} < 2(1 + \sqrt{2}) \] Simplifying this: \[ 2 + \sqrt{5} < 2 + 2\sqrt{2} \] This simplifies to: \[ \sqrt{5} < 2\sqrt{2} \] Squaring both sides (since both sides are positive): \[ 5 < 8 \quad \text{(true)} \] Thus, we conclude: \[ I_1 < I_2 \] ### Final Conclusion The correct option is that \( I_2 \) is greater than \( I_1 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-II)|11 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -3|55 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise ELEMENTRAY EXERCISE|47 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

If I _(1) = int _(e) ^(e ^(2)) (dx )/( ln x ) and I _(2) = int _(1) ^(2) (e ^(x))/(x) dx, then

If I_(1) int_(1)^(2) dx/sqrt(1+x^(2)) and I_(1) = int _(1)^(2) dx/x then

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

If l_(1)=int_(0)^(1)(dx)/(sqrt(1+x^(2))) and I_(2)=int_(0)^(1)(dx)/(|x|) then

I=int((1+x)^(2))/(sqrt(x))dx

(i) int(x-1)/(sqrt(x^(2)+1))dx

If I_(1)=int_(n)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

If I=int(x^(2)dx)/(sqrt(1+x^(3)))

MOTION-DEFINITE INTEGRATION -EXERCISE -2 (LEVEL-I)
  1. If int (0)^(x^(2)) f(t) dt = x cos pix , then the value of f(4) is

    Text Solution

    |

  2. If C0/1+C1/2+C2/3=0 , where C0 C1, C2 are all real, the equation C2x...

    Text Solution

    |

  3. Let I (1) = int (1) ^(2) (dx )/(sqrt(1 + x ^(2))) and I (2) = int (1) ...

    Text Solution

    |

  4. If I(n)=underset(0)overset(pi//4)inttan^(n)x dx, then (1)/(I(2)+I(4)...

    Text Solution

    |

  5. If I (1) = int (0) ^(1) 2 ^(x ^(2)) dx, I (2) = int (0) ^(1) 2 ^(x ^(3...

    Text Solution

    |

  6. If u (n) = int (0) ^(pi//2) x ^(n) sin x dx, n in N then the value of ...

    Text Solution

    |

  7. The vlaue of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(...

    Text Solution

    |

  8. In = int0^(pi/4) tan^n x dx , then the value of n(l(n-1) + I(n+1)) is

    Text Solution

    |

  9. The value of the integral l = int(0)^(1) x(1-x)^(n) dx is

    Text Solution

    |

  10. Let I (1) = int (0) ^(1) (e ^(x) dx )/( 1 + x) and I (2) = int (0) ^(1...

    Text Solution

    |

  11. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  12. If underset(0)overset(100)intf(x) dx = a, then underset(r=1)overset(10...

    Text Solution

    |

  13. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  14. underset(2-ln3)overset(3+ln3)int(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal...

    Text Solution

    |

  15. If [x] stands for the greatest integer function, the value of overset(...

    Text Solution

    |

  16. Find the value of the function f(x)=1+x+int1^x((lnt)^2+2lnt) dt where ...

    Text Solution

    |

  17. If f(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4) then f^(prime)(2) has th...

    Text Solution

    |

  18. If f(x) is differentiable and int0^(t^2)xf(x)dx=2/5t^5, then f(4/(25))...

    Text Solution

    |

  19. If y(x)=\ int(pi^2//16)^(x^2)(cos xdotcossqrt(theta))/(1+sin^2sqrt(the...

    Text Solution

    |

  20. lim( n to oo) (sin ""(pi)/(2n) . sin ""(2pi)/(2n). sin ""(3pi)/(2n)......

    Text Solution

    |