Home
Class 12
MATHS
lim( n to oo) (sin ""(pi)/(2n) . sin ""(...

`lim_( n to oo) (sin ""(pi)/(2n) . sin ""(2pi)/(2n). sin ""(3pi)/(2n)......sin""((n -1) pi)/(2n))^(1//n)` is equal to

A

`1/2`

B

`1/3`

C

`1/4`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \sin\left(\frac{\pi}{2n}\right) \cdot \sin\left(\frac{2\pi}{2n}\right) \cdot \sin\left(\frac{3\pi}{2n}\right) \cdots \sin\left(\frac{(n-1)\pi}{2n}\right) \right)^{\frac{1}{n}}, \] let's denote this limit as \( y \). ### Step 1: Take the logarithm of both sides Assuming \[ y = \lim_{n \to \infty} \left( \sin\left(\frac{\pi}{2n}\right) \cdot \sin\left(\frac{2\pi}{2n}\right) \cdots \sin\left(\frac{(n-1)\pi}{2n}\right) \right)^{\frac{1}{n}}, \] we take the natural logarithm: \[ \log y = \lim_{n \to \infty} \frac{1}{n} \log \left( \sin\left(\frac{\pi}{2n}\right) \cdot \sin\left(\frac{2\pi}{2n}\right) \cdots \sin\left(\frac{(n-1)\pi}{2n}\right) \right). \] ### Step 2: Use properties of logarithms Using the property of logarithms that states \( \log(a \cdot b) = \log a + \log b \), we can rewrite the limit as: \[ \log y = \lim_{n \to \infty} \frac{1}{n} \left( \log \sin\left(\frac{\pi}{2n}\right) + \log \sin\left(\frac{2\pi}{2n}\right) + \cdots + \log \sin\left(\frac{(n-1)\pi}{2n}\right) \right). \] ### Step 3: Express as a summation This can be expressed as a summation: \[ \log y = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n-1} \log \sin\left(\frac{r\pi}{2n}\right). \] ### Step 4: Convert summation to integral As \( n \to \infty \), the summation can be approximated by an integral: \[ \log y = \lim_{n \to \infty} \int_{0}^{1} \log \sin\left(\frac{\pi x}{2}\right) \, dx. \] ### Step 5: Change of variables Let \( t = \frac{\pi x}{2} \), then \( dx = \frac{2}{\pi} dt \). The limits change from \( x = 0 \) to \( x = 1 \) which corresponds to \( t = 0 \) to \( t = \frac{\pi}{2} \): \[ \log y = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \log \sin t \, dt. \] ### Step 6: Evaluate the integral The integral \( \int_{0}^{\frac{\pi}{2}} \log \sin t \, dt \) is a known result and equals \( -\frac{\pi}{2} \log 2 \). Thus, \[ \log y = \frac{2}{\pi} \left(-\frac{\pi}{2} \log 2\right) = -\log 2. \] ### Step 7: Exponentiate to find \( y \) Exponentiating both sides gives: \[ y = e^{-\log 2} = \frac{1}{2}. \] ### Final Result Thus, the limit is: \[ \lim_{n \to \infty} \left( \sin\left(\frac{\pi}{2n}\right) \cdot \sin\left(\frac{2\pi}{2n}\right) \cdots \sin\left(\frac{(n-1)\pi}{2n}\right) \right)^{\frac{1}{n}} = \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-II)|11 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -3|55 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise ELEMENTRAY EXERCISE|47 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)n sin\ (2 pi)/(3n)*cos\ (2 pi)/(3n)

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to :

2 ^ (n-1) sin ((pi) / (n)) sin ((2 pi) / (n)) ..... sin ((n-1) / (n)) pi equals:

Compute underset(n rarr oo)("lim")(pi)/(n)| "sin"(pi)/(n) + "sin"(2pi)/(n)+ ….+ "sin"((n-1)pi)/(n)|

The value of lim_( n to oo) (1)/(n) ( sin (pi/ n) + sin (2pi/n) + …+ sin (n pi/ n) ) is

Evaluate lim_(ntooo)(1)/(n)[sin^(2k).(pi)/(2n)+sin^(2k).(2pi)/(2n)+....+sin^(2k).(pi)/(2)]

MOTION-DEFINITE INTEGRATION -EXERCISE -2 (LEVEL-I)
  1. If I (1) = int (0) ^(1) 2 ^(x ^(2)) dx, I (2) = int (0) ^(1) 2 ^(x ^(3...

    Text Solution

    |

  2. If u (n) = int (0) ^(pi//2) x ^(n) sin x dx, n in N then the value of ...

    Text Solution

    |

  3. The vlaue of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(...

    Text Solution

    |

  4. In = int0^(pi/4) tan^n x dx , then the value of n(l(n-1) + I(n+1)) is

    Text Solution

    |

  5. The value of the integral l = int(0)^(1) x(1-x)^(n) dx is

    Text Solution

    |

  6. Let I (1) = int (0) ^(1) (e ^(x) dx )/( 1 + x) and I (2) = int (0) ^(1...

    Text Solution

    |

  7. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  8. If underset(0)overset(100)intf(x) dx = a, then underset(r=1)overset(10...

    Text Solution

    |

  9. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  10. underset(2-ln3)overset(3+ln3)int(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal...

    Text Solution

    |

  11. If [x] stands for the greatest integer function, the value of overset(...

    Text Solution

    |

  12. Find the value of the function f(x)=1+x+int1^x((lnt)^2+2lnt) dt where ...

    Text Solution

    |

  13. If f(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4) then f^(prime)(2) has th...

    Text Solution

    |

  14. If f(x) is differentiable and int0^(t^2)xf(x)dx=2/5t^5, then f(4/(25))...

    Text Solution

    |

  15. If y(x)=\ int(pi^2//16)^(x^2)(cos xdotcossqrt(theta))/(1+sin^2sqrt(the...

    Text Solution

    |

  16. lim( n to oo) (sin ""(pi)/(2n) . sin ""(2pi)/(2n). sin ""(3pi)/(2n)......

    Text Solution

    |

  17. The value of underset( n rarroo)(lim) underset(r=1)overset(r=4n)(sum)(...

    Text Solution

    |

  18. lim(n->oo) (1^p+2^p+3^p+...........+n^p)/n^(p+1)

    Text Solution

    |

  19. Evaluate : lim(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim(n->oo) (1^3+2^3...

    Text Solution

    |

  20. underset(n to oo)lim underset(r=1)overset(n)sum(1)/(n)e^(r//n) is

    Text Solution

    |