Home
Class 12
MATHS
int (0) ^(pi//4) (xdx )/(cos x (cos x + ...

`int _(0) ^(pi//4) (xdx )/(cos x (cos x + sin x ))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{x}{\cos x (\cos x + \sin x)} \, dx, \] we will use a property of definite integrals. The property states that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] Here, we have \( a = 0 \) and \( b = \frac{\pi}{4} \). Therefore, we will replace \( x \) with \( \frac{\pi}{4} - x \): \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\frac{\pi}{4} - x}{\cos\left(\frac{\pi}{4} - x\right) \left(\cos\left(\frac{\pi}{4} - x\right) + \sin\left(\frac{\pi}{4} - x\right)\right)} \, dx. \] Next, we need to evaluate \( \cos\left(\frac{\pi}{4} - x\right) \) and \( \sin\left(\frac{\pi}{4} - x\right) \): Using the angle subtraction formulas: \[ \cos\left(\frac{\pi}{4} - x\right) = \cos\frac{\pi}{4}\cos x + \sin\frac{\pi}{4}\sin x = \frac{1}{\sqrt{2}}(\cos x + \sin x), \] \[ \sin\left(\frac{\pi}{4} - x\right) = \sin\frac{\pi}{4}\cos x - \cos\frac{\pi}{4}\sin x = \frac{1}{\sqrt{2}}(\cos x - \sin x). \] Now substituting these into our expression for \( I \): \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\frac{\pi}{4} - x}{\frac{1}{\sqrt{2}}(\cos x + \sin x) \left(\frac{1}{\sqrt{2}}(\cos x + \sin x)\right)} \, dx. \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\frac{\pi}{4} - x}{\frac{1}{2}(\cos x + \sin x)^2} \, dx = 2 \int_{0}^{\frac{\pi}{4}} \frac{\frac{\pi}{4} - x}{(\cos x + \sin x)^2} \, dx. \] Now we can add the two expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{4}} \frac{x + \left(\frac{\pi}{4} - x\right)}{\cos x (\cos x + \sin x)} \, dx = \int_{0}^{\frac{\pi}{4}} \frac{\frac{\pi}{4}}{\cos x (\cos x + \sin x)} \, dx. \] Thus, \[ I = \frac{\pi}{8} \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x (\cos x + \sin x)} \, dx. \] Next, we simplify the integral: \[ \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x (\cos x + \sin x)} \, dx. \] We can factor out \( \cos x \): \[ \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \cdot \frac{1}{1 + \tan x} \, dx = \int_{0}^{\frac{\pi}{4}} \sec^2 x \cdot \frac{1}{1 + \tan x} \, dx. \] Now we make the substitution \( t = \tan x \), which gives \( dt = \sec^2 x \, dx \). The limits change as follows: when \( x = 0 \), \( t = 0 \) and when \( x = \frac{\pi}{4} \), \( t = 1 \): \[ \int_{0}^{1} \frac{1}{1 + t} \, dt = \left[ \ln(1 + t) \right]_{0}^{1} = \ln(2) - \ln(1) = \ln(2). \] Thus, we have: \[ \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x (\cos x + \sin x)} \, dx = \ln(2). \] Finally, substituting back, we find: \[ I = \frac{\pi}{8} \ln(2). \] ### Final Answer: \[ I = \frac{\pi}{8} \ln(2). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-I|15 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-II)|11 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)(xdx)/(sin x+cos x)

int_(0)^((pi)/(4))sin x cos xdx

int_ (0) ^ (pi) (xdx) / (1 + cos alpha * sin x) = (pi alpha) / (sin alpha), 0

int_(0)^( pi/4)sin x cos xdx

int_(0)^( pi/2)sin^(2)x cos xdx

int_(0)^( pi/2)x sin x cos xdx

int_(0)^((pi)/(4))x cos xdx

int_(0)^((pi)/(4))x cos xdx

int _(0)^(pi//2) (sin x cos xdx)/(cos^(2) x+ 3 cos x+2) is equal to

MOTION-DEFINITE INTEGRATION -EXERCISE -3
  1. Evaluate : int- 1^1((2x^(332)+x^(998)+4x^(1668)*sinx^(691))/(1+x^(666)...

    Text Solution

    |

  2. int (-1) ^(2) (x ^(2) -x)/(sqrt(x ^(2) + 4))

    Text Solution

    |

  3. int (0) ^(pi//4) (xdx )/(cos x (cos x + sin x ))

    Text Solution

    |

  4. Evaluate :int0^(pi/2)(asinx+bcosx)/(sin(pi/4+x))dx

    Text Solution

    |

  5. int (0) ^(pi) ((ax +b) sec c tan x)/(4 + tan ^(2) x ) dx (a,b gt 0)

    Text Solution

    |

  6. int0^pi((2x+3)sinx)/((1+cos^2x)dx

    Text Solution

    |

  7. intxsin^(- 1)[1/2sqrt((2a-x)/a)]dx

    Text Solution

    |

  8. f,g, h , are continuous in [0, a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-...

    Text Solution

    |

  9. Evaluate int0^1(dx)/((5+2x-2x^2)(1+e^(2-4x))) dx

    Text Solution

    |

  10. The value of the integral underset(0)overset(pi)int (xdx)/(1+cos alpha...

    Text Solution

    |

  11. int (0) ^(pi//4) (x ^(2) (sin 2x -cos 2x ))/((1+ sin 2x ) cos ^(2) x) ...

    Text Solution

    |

  12. Evaluate: int ( 0 ) ^(pi) e ^(|cos x|)( 2 sin ((1)/(2)cos x )+ 3 cos...

    Text Solution

    |

  13. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  14. The value of int(-1)^2{2x}dx is (where function () denotes fractional ...

    Text Solution

    |

  15. If y=x^(int1^x ln t dt), find (dy)/(dx) at x=e.

    Text Solution

    |

  16. Evaluate (lim)(n->oo)n^2int(-1//n)^(1//n)(2010 s in x+2012cosx)|x|d...

    Text Solution

    |

  17. Prove the following inequalty sqrt3/8<int(pi/4)^(pi/3)sinx/x dx<sqrt2/...

    Text Solution

    |

  18. Prove that 4le int(1)^(3) sqrt(3+x^(3)) dx le 2sqrt30.

    Text Solution

    |

  19. Prove that pi/6<int0^1(dx)/(sqrt(4-x^2-x^3))<pi/(4sqrt(2))

    Text Solution

    |

  20. prove it 2e^(-1/4) < int0^2e^(x^2-x)dx < 2e^2

    Text Solution

    |