Home
Class 12
MATHS
The solution for x of the equation int ...

The solution for x of the equation `int _(sqrt2) ^(x) (dt)/( tsqrt(t ^(2) -1))= (pi)/(12)` is

A

2

B

`pi`

C

`sqrt3//2`

D

`2sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -3|55 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

The solution for x of the equation int_(sqrt(2))^(x)(dt)/(t sqrt(t^(2)-1))=(pi)/(2) is: (A) 2(B)pi(C)(sqrt(3))/(2) (D) 2sqrt(2)

The solution for x of the equation int_(sqrt(2))^(x)(dt)/(sqrt(t^(2)-1))=(pi)/(2) is pi(b)(sqrt(3))/(2) (c) 2sqrt(2) (d) none of these

The solution for x of the equation int_(sqrt(2))^(x)(1)/(tsqrt(t^(2)-1))dt=(pi)/(2) , is

int(1)/(tsqrt(t^(2) -1))dt

" (a) "int(dt)/(sqrt(1-t^(2)))

If int_(ln2)^(x)(dt)/(sqrt(e^(t)-1))=(pi)/(6), then x=

int(dt)/(t+sqrt(a^(2)-t^(2)))