Home
Class 12
MATHS
Statement I: The value of the integral i...

Statement I: The value of the integral `int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx))` is equal to `(pi)/6`.
Statement II: `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`

A

If both Statement - I and Statement - II are true, and Statement - II is the correct explanation of Statement- I.

B

If both Statement-I and Statement - II are true but Statement - II is not the correct explanation of Statement-I.

C

If Statement-I is true but Statement - II is false

D

If Statement-I is false but Statement-II is true.

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -3|55 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

Statement - I : The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to pi/6 . Statement - II : int_a^bf(x)dx=int_a^bf(a+b-x)dxdot (1) Statement - I is True; Statement -II is true; Statement-II is not a correct explanation for Statement-I (2) Statement -I is True; Statement -II is False. (3) Statement -I is False; Statement -II is True (4) Statement -I is True; Statement -II is True; Statement-II is a correct explanation for Statement-I

Statement I The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tan x)) is pi/6 Statement II int_(a)^(b) f(x) dx = int_(a)^(b) f(a+b-x)dx

Statement 1: The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to pi/6 Statement 2: int_a^bf(x)dx=int_a^bf(a+b-x)dxdot Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

int_(pi//6)^(pi//3) sin(3x)dx=

The integral int_((pi)/(6))^((5 pi)/(6))(dx)/(1+cos x) is equal to