Home
Class 12
MATHS
Let f be a non-negative function defined...

Let f be a non-negative function defined on the interval .[0,1].If `int_0^x sqrt[1-(f'(t))^2].dt`=`int_0^x f(t).dt`, `0<=x<=1` and f(0)=0,then

A

`f ((1)/(2)) lt 1/2 and f ((1)/(3)) gt 1/3`

B

`f ((1)/(2)) gt 1/2 and f ((1)/(3)) gt 1/3`

C

` f ((1)/(2)) lt 1/2 and f ((1)/(3)) lt 1/3`

D

`f ((1)/(2)) gt 1/2 and f ((1)/(3)) lt 1/3 `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-I|15 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

Let f be a non-negative function defined on the interval [0,1] . If int_0^xsqrt(1-(f\'(t))^2)dt=int_0^xf(t)dt, 0lexle1 and f(0)=0 , then (A) f(1/2)lt1/2 and f(1/3)gt1/3 (B) f(1/2)gt1/2 and f(1/3)gt1/3 (C) f(1/2)lt1/2 and f(1/3)lt1/3 (D) f(1/2)gt1/2 and f(1/3)lt1/3

Let f be a non-negative function defined on the interval [0,1]dot If int_0^xsqrt(1-(f^(prime)(t))^2)dt=int_0^xf(t)dt ,0lt=xlt=1,a n df(0)=0,t h e n (A)f(1/2) 1/3 (B)f(1/2)>1/2a n df(1/3)>1/3 (C)f(1/2) 1/2a n df(1/3)<1/3

Let f be a non-negative function in [0, 1] and twice differentiate in (0, 1). If int_0^x sqrt(1-(f'(t))^(2))dt=int_0^x f(t)dt , 0 lexle1 and f(0)=0 then the value of lim_(x to0)int_0^xf(t)/x^2 dt is

Let f be a function defined on the interval [0,2pi] such that int_(0)^(x)(f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt and f(0)=1 . Then the maximum value of f(x) is…………………..

Let f(x) be a non constant function such that int _(0) ^(x) (f (t))^(3) dt = (1)/(x ^(2))(int _(0) ^(x) (f(t)dt ) ) ^(3) AA x in R- {0} If f(1)=1 then f((1)/(2))=

Let f(x) be a continuous function which takes positive values for xge0 and satisfy int_(0)^(x)f(t)dt=x sqrt(f(x)) with f(1)=1/2 . Then

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

MOTION-DEFINITE INTEGRATION -EXERCISE -4 LEVEL-II
  1. Match the integrals in Column I with the values in {:("Column II. ,...

    Text Solution

    |

  2. Let S(n)=underset(k=1)overset(n)sum (n)/(n^(2)+nk+k^(2)) and T(n)=unde...

    Text Solution

    |

  3. Let f be a non-negative function defined on the interval .[0,1].If int...

    Text Solution

    |

  4. Let f:R to R be a function which satisfies f(x)=overset(x)underset(0...

    Text Solution

    |

  5. The value of underset(xrarr0)(lim)(1)/(x^(3)) int(0)^(x)(tln(1+t))/(t^...

    Text Solution

    |

  6. The value of overset(1)underset(0)int (x^(4)(1-x)^(4))/(1+x^(2))dx is

    Text Solution

    |

  7. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  8. For any real number x ,l e t[x] denote the largest integer less than o...

    Text Solution

    |

  9. T h ev a l u eofint(sqrt(1n2))^(sqrt(1n3))(xsinx^2)/(sinx^2+sin(1n6-x^...

    Text Solution

    |

  10. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  11. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  12. Let f:[1/2,1]vecR (the set of all real numbers) be a positive, non-con...

    Text Solution

    |

  13. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  14. Let f:(0,oo)vecR be given by f(x)=int(1/x)^x(e^(-(t+1/t))dt)/t , then ...

    Text Solution

    |

  15. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  16. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  17. Let f: RvecR be a function defined by f(x)={[x],xlt=2 0,x >2 where [...

    Text Solution

    |

  18. If alpha=int0^1(e^9x+3tan^((-1)x))((12+9x^2)/(1+x^2))dxw h e r etan^(-...

    Text Solution

    |

  19. Let f: RvecR be a continuous odd function, which vanishes exactly at o...

    Text Solution

    |

  20. Let f (x) = 7 tan ^(8) x + 7 tan ^(6) x - 3 tan ^(4) x - 3 tan ^(2) x ...

    Text Solution

    |