Home
Class 12
MATHS
Let f^(prime)(x)=(192 x^3)/(2+sin^4pix)f...

Let `f^(prime)(x)=(192 x^3)/(2+sin^4pix)fora l lx in Rw i t hf(1/2)=0.Ifmlt=int_(1/2)^1f(x)dxlt=M ,` then the possible values of `ma n dM` are `m=13 ,M=24` (b) `m=1/4,M=1/2` `m=-11 ,M=0` (d) `m=1,M=12`

A

`m = 13, M =24`

B

`m =1/4, M =1/2`

C

`m =-11, M =0`

D

`m =1, M =12`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-I|15 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

Let f^(prime)(x)=(192 x^3)/(2+sin^4pix)fora l lx in Rw i t hf(1/2)=0.Ifmlt=int_(1/2)^1f(x)dxlt=M , then the possible values of ma n dM are (a)m=13 ,M=24 (b) m=1/4,M=1/2 (c)m=-11 ,M=0 (d) m=1,M=12

Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. If mlt=int_(1/2)^1f(x)dxlt=M then the possible values of m and M are (i) m=13,M= 24 (ii) m=1/4,M=1/2 (iii) m=-11,M = 0 (iv) m=1,M=12

Let M be the maximum and m be the minimum value of |2/(3+i e^(itheta))| , then (a)M=2 (b) M=1 m=1/4 (d) m=1/2

Let the line 3x+4y=m touches the circle x^(2)+y^(2)-10x=0 .If the possible values of m are m_(1) and m_(2) then ((m_(1)+m_(2)))/(10) is

f(m)<0.f(x)=ax^(2)-bx+c,m lies between the roots and f(m_(1))f(m_(2))<0 ,then one of the roots will lies between m_(1) and m_(2)

If m, n in N , then l_(m n) = int_(0)^(1) x^(m) (1-x)^(n) dx is equal to

Let f(x0=(1+b^(2))x^(2)+2bx+1 and let m(b) be the minimum value of f(x). As b varies, the range of m(b) is

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

Let f(x) = (x^(2) + 4x + 1)/( x^(2) + x + 1), x inR If m le f(x) le M AA x in R , then (1)/(2) (M - m) = _______

MOTION-DEFINITE INTEGRATION -EXERCISE -4 LEVEL-II
  1. T h ev a l u eofint(sqrt(1n2))^(sqrt(1n3))(xsinx^2)/(sinx^2+sin(1n6-x^...

    Text Solution

    |

  2. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  3. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  4. Let f:[1/2,1]vecR (the set of all real numbers) be a positive, non-con...

    Text Solution

    |

  5. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  6. Let f:(0,oo)vecR be given by f(x)=int(1/x)^x(e^(-(t+1/t))dt)/t , then ...

    Text Solution

    |

  7. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  8. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  9. Let f: RvecR be a function defined by f(x)={[x],xlt=2 0,x >2 where [...

    Text Solution

    |

  10. If alpha=int0^1(e^9x+3tan^((-1)x))((12+9x^2)/(1+x^2))dxw h e r etan^(-...

    Text Solution

    |

  11. Let f: RvecR be a continuous odd function, which vanishes exactly at o...

    Text Solution

    |

  12. Let f (x) = 7 tan ^(8) x + 7 tan ^(6) x - 3 tan ^(4) x - 3 tan ^(2) x ...

    Text Solution

    |

  13. Let f^(prime)(x)=(192 x^3)/(2+sin^4pix)fora l lx in Rw i t hf(1/2)=0....

    Text Solution

    |

  14. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  15. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  16. The total number of distincts x in [0,1] for which int(0)^(x) (t^(2))...

    Text Solution

    |

  17. Let f(x)=lim(n->oo)((n^n(x+n)(x+n/2)....(x+n/n))/(n!(x^2+n^2)(x^2+n^2/...

    Text Solution

    |

  18. Let f: R -> R be a differentiable function such that f(0)=0, f((pi/2))...

    Text Solution

    |

  19. For each positive integer n, let jy(n) =1/n ((n +1) (n +2) …(n +n) )...

    Text Solution

    |

  20. The value of the integral int0^(1/2)(1+sqrt(3))/(((x+1)^2(1-x)^6)^(...

    Text Solution

    |