Home
Class 12
MATHS
intxl nxdx...

`intxl nxdx`

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 3 (COMPREHENSION)|2 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - I)|10 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 2 (LEVEL - II MIXED PROBLEMS)|2 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos

Similar Questions

Explore conceptually related problems

If m!=n where m,n are positive integers,then int sin mx sin nxdx=

If m and n are positive integers and m!=n show (i) int_(0)^(2 pi)sin mx sin nxdx=0 (ii) int_(0)^( pi)cos mx cos nxdx=0 (iii) int_(0)^( pi)cos^(m)x

Let I_(n)=inttan^nxdx,(ngt1)*I_(4)+I_(6)=atan^5x+bx^5+c , where c is constant of integration, then the ordered pair (a,b) is equal to

If I_(m,n)=int cos^(m)x sin nxdx=f(m,n)I_(m-1)-(cos^(m)x cos nx)/(m+n), then f(m,n)=

int sin mx cos nxdx,m!=n

int cos mx cos nxdx,m!=n

Prove that int_(-pi)^( pi)cos mx cos nxdx=

int_(0)^( pi)cos mx*cos nxdx(m!=n)=

Integrate: int sin mx cos nxdx,m!=n

Integrate: int cos mx cos nxdx,m!=n