Home
Class 12
MATHS
If A=[[x, x] , [x, x]] and B=[[x, -x] , ...

If `A=[[x, x] , [x, x]]` and `B=[[x, -x] , [-x, x]]` then prove that `x e^A=1/2(A.e^(2x)+B)` where `e^A= I+A+A^2/(2!)+...`

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MOTION|Exercise Exercise - 1|35 Videos
  • MATRICES

    MOTION|Exercise Exercise - 2(Level-I) (Single correct Option - type Questions)|7 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos

Similar Questions

Explore conceptually related problems

If g(x)=e^(x) and f(x)=x^(2) then prove that (gof)=e^(x^(2)) and fog=e^(2x)

(e^(2x)+2e^(x)+1)/(e^(x))

If A={(x,y):y=e^(x),x in R} and B={(x,y):y=e^(-2x),x in R}, then

int (e^(2x) +e^(-2x))/(e^(x)) dx

f(x)=((e^(2x)-1)/(e^(2x)+1)) is

Prove that the least value of f(x) = (e^(x) + e^(-x)) is 2

int (e ^ (2x) -e ^ (- 2x)) / (e ^ (2x) + e ^ (- 2x)) dx

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If y=e^(3 log x+2x)," Prove that "(dy)/(dx)=x^(2) (2x+3) e^(2x) .

I=int(e^(2x)-1)/(e^(2x))dx

MOTION-MATRICES -Exercise - 4 (Level-II)
  1. If A=[[x, x] , [x, x]] and B=[[x, -x] , [-x, x]] then prove that x e^A...

    Text Solution

    |

  2. Let A=[1 0 0 0 1 1 0-2 4],I=[1 0 0 0 1 0 0 0 1]a n dA^(-1)=[1/6(A^2+c ...

    Text Solution

    |

  3. If P=[[sqrt3/2,1/2] , [-1/2,sqrt3/2]] and A=[[1,1] , [0,1]] and Q=PAP^...

    Text Solution

    |

  4. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  5. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  6. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  7. Match the following {:("(A) The minimum value of "(x^(2)+2x+4)/(x+2)...

    Text Solution

    |

  8. Let A be the set of all 3 xx 3 symmetric matrices all of whose entrie...

    Text Solution

    |

  9. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  10. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  11. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  12. Let p be an odd prime number and Tp be the following set of 2 x 2 ma...

    Text Solution

    |

  13. Let p be an odd prime number and Tp be the following set of 2 x 2 ma...

    Text Solution

    |

  14. Let p be an odd prime number and Tp be the following set of 2 x 2 ma...

    Text Solution

    |

  15. Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-...

    Text Solution

    |

  16. Let M be a 3xx3 matrix satisfying M[{:(0),(1),(0):}]=[{:(-1),(2),(3):}...

    Text Solution

    |

  17. Let P = [a(ij)] " be a " 3 xx 3 matrix and let Q = [b(ij)], " where " ...

    Text Solution

    |

  18. If P is a 3xx3 matrix such that P^T = 2P+I, where P^T is the transpose...

    Text Solution

    |

  19. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  20. For 3xx3 matrices Ma n dN , which of the following statement (s) is (a...

    Text Solution

    |

  21. Let Ma n dN be two 3xx3 matrices such that M N=N Mdot Further, if M!=N...

    Text Solution

    |