Home
Class 12
MATHS
Obtain the characteristic equation of th...

Obtain the characteristic equation of the matrix `A=[(1, 0,2),(0,2,1),(2,0,3)]` and verify that it is satisfied y A and hence find its inverse.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of obtaining the characteristic equation of the matrix \( A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \) and verifying it, as well as finding its inverse, we will follow these steps: ### Step 1: Find the characteristic polynomial The characteristic polynomial of a matrix \( A \) is given by the determinant of \( A - \lambda I \), where \( I \) is the identity matrix and \( \lambda \) is a scalar. 1. **Formulate \( A - \lambda I \)**: \[ A - \lambda I = \begin{pmatrix} 1 - \lambda & 0 & 2 \\ 0 & 2 - \lambda & 1 \\ 2 & 0 & 3 - \lambda \end{pmatrix} \] 2. **Calculate the determinant**: We need to find \( \det(A - \lambda I) \): \[ \det(A - \lambda I) = (1 - \lambda) \det\begin{pmatrix} 2 - \lambda & 1 \\ 0 & 3 - \lambda \end{pmatrix} - 2 \det\begin{pmatrix} 0 & 1 \\ 2 & 3 - \lambda \end{pmatrix} \] First, calculate the two 2x2 determinants: - For \( \begin{pmatrix} 2 - \lambda & 1 \\ 0 & 3 - \lambda \end{pmatrix} \): \[ \det = (2 - \lambda)(3 - \lambda) - 0 = (2 - \lambda)(3 - \lambda) \] - For \( \begin{pmatrix} 0 & 1 \\ 2 & 3 - \lambda \end{pmatrix} \): \[ \det = 0 \cdot (3 - \lambda) - 1 \cdot 2 = -2 \] Now substituting back: \[ \det(A - \lambda I) = (1 - \lambda)((2 - \lambda)(3 - \lambda)) + 4 \] Expanding this: \[ = (1 - \lambda)(6 - 5\lambda + \lambda^2) + 4 \] \[ = 6 - 5\lambda + \lambda^2 - 6\lambda + 5\lambda^2 - \lambda^3 + 4 \] \[ = -\lambda^3 + 6\lambda^2 - 11\lambda + 10 \] Thus, the characteristic polynomial is: \[ \lambda^3 - 6\lambda^2 + 11\lambda - 10 = 0 \] ### Step 2: Verify the characteristic equation is satisfied by \( A \) To verify, we substitute \( A \) into the characteristic polynomial: 1. **Calculate \( A^2 \) and \( A^3 \)**: - First, calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 8 \\ 4 & 4 & 7 \\ 8 & 0 & 13 \end{pmatrix} \] - Then, calculate \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 5 & 0 & 8 \\ 4 & 4 & 7 \\ 8 & 0 & 13 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 21 & 16 & 38 \\ 14 & 8 & 27 \\ 26 & 0 & 46 \end{pmatrix} \] 2. **Substitute into the polynomial**: We need to check if: \[ A^3 - 6A^2 + 11A - 10I = 0 \] After substituting \( A, A^2, A^3 \) and simplifying, we should arrive at the zero matrix. ### Step 3: Find the inverse of \( A \) To find the inverse of \( A \), we can use the formula: \[ A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \] 1. **Calculate \( \det(A) \)**: \[ \det(A) = 1(2 \cdot 3 - 1 \cdot 0) - 0 + 2(0 - 2 \cdot 1) = 6 - 4 = 2 \] 2. **Calculate the adjugate of \( A \)**: The adjugate is the transpose of the cofactor matrix. Calculate the cofactors and then transpose: \[ \text{adj}(A) = \begin{pmatrix} 2 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -2 & 2 \end{pmatrix} \] 3. **Compute the inverse**: \[ A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ -0.5 & 1.5 & -1 \\ 0 & -1 & 1 \end{pmatrix} \] ### Summary of Steps: 1. Calculate \( A - \lambda I \). 2. Find the determinant to get the characteristic polynomial. 3. Verify the polynomial is satisfied by substituting \( A \). 4. Calculate the inverse using the adjugate and determinant.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MOTION|Exercise Exercise - 1|35 Videos
  • MATRICES

    MOTION|Exercise Exercise - 2(Level-I) (Single correct Option - type Questions)|7 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the matrix [(1,2,3),(0,1,4),(5,6,0)]

Find the characteristic equation of the matrix A= [(2,1),(3,2)] and hence find its inverse using Cayley-hamilton theorem.

The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

Find the inverse of the matrix : A=[{:(0,1,2),(0,1,1),(1,0,2):}]

The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

Find the additive inverse of the matrix A=[{:(2,-5," "0),(4," "3,-1):}].

Find the inverse of the matrix [{:(3,-1,-2),(2," "0,-1),(3,-5," "0):}]

find the inverse of the matrix A= [(2, -2, 3), (1 ,0 ,-3), (3 ,4 ,0)]

Find the inverse of the matrix [[0,1,21,2,33,1,1]]

MOTION-MATRICES -Exercise - 4 (Level-II)
  1. Obtain the characteristic equation of the matrix A=[(1, 0,2),(0,2,1),(...

    Text Solution

    |

  2. Let A=[1 0 0 0 1 1 0-2 4],I=[1 0 0 0 1 0 0 0 1]a n dA^(-1)=[1/6(A^2+c ...

    Text Solution

    |

  3. If P=[[sqrt3/2,1/2] , [-1/2,sqrt3/2]] and A=[[1,1] , [0,1]] and Q=PAP^...

    Text Solution

    |

  4. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  5. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  6. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  7. Match the following {:("(A) The minimum value of "(x^(2)+2x+4)/(x+2)...

    Text Solution

    |

  8. Let A be the set of all 3 xx 3 symmetric matrices all of whose entrie...

    Text Solution

    |

  9. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  10. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  11. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  12. Let p be an odd prime number and Tp be the following set of 2 x 2 ma...

    Text Solution

    |

  13. Let p be an odd prime number and Tp be the following set of 2 x 2 ma...

    Text Solution

    |

  14. Let p be an odd prime number and Tp be the following set of 2 x 2 ma...

    Text Solution

    |

  15. Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-...

    Text Solution

    |

  16. Let M be a 3xx3 matrix satisfying M[{:(0),(1),(0):}]=[{:(-1),(2),(3):}...

    Text Solution

    |

  17. Let P = [a(ij)] " be a " 3 xx 3 matrix and let Q = [b(ij)], " where " ...

    Text Solution

    |

  18. If P is a 3xx3 matrix such that P^T = 2P+I, where P^T is the transpose...

    Text Solution

    |

  19. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  20. For 3xx3 matrices Ma n dN , which of the following statement (s) is (a...

    Text Solution

    |

  21. Let Ma n dN be two 3xx3 matrices such that M N=N Mdot Further, if M!=N...

    Text Solution

    |