Home
Class 12
MATHS
Which relation is true for A =[(2,-1),(-...

Which relation is true for `A =[(2,-1),(-1,2)]` and `B=[(1,4),(-1,1)]` (1) `(A+B)^2=A^2+2AB+B^2` (2) `(-B)^2=A^2-2AB+B^2` (3) AB=BA (4) None of these

A

`(A+B)^(2)=A^(2)+2AB+B^(2)`

B

`(A-B)^(2)=A^(2)-2AB+B^(2)`

C

AB = BA

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MOTION|Exercise Exercise - 2(Level-I) (Single correct Option - type Questions)|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 2(Level-II) (Multiple correct Option - type Questions)|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos

Similar Questions

Explore conceptually related problems

Which relation is true for A=[[2,-1-1,2]] and B=[[1,4-1,1]] (1) (A+B)^(2)=A^(2)+2AB+B^(2)(2)(-B)^(2)=A^(2)-2AB+B^(2)(2)AB=BA(4) None of these

If A=[(2,1),(1,0)],B=[(1,-1),(2,3)] , verify that : (A+B)^(2)!=A^(2)+2AB+B^(2)

If A=[(2,-3,1),(-2,3,4)] and B=[(2,5),(3,1),(4,2)] , then Find AB

If A=[(1,-1),(2,1)], B=[(a,1),(b,-1)] and (A+B)^(2)=A^(2)+B^(2)+2AB , then

A=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}] Verify AB=BA or not.

Given A=[{:(2,4,0),(3,9,6):}] "and" B=[{:(1,4),(2,8),(1,3):}] , is (AB)=B'A'?

If A=[(1,-2,3),(-4,2,5)] and B=[(2,3),(4,5),(2,1)] , find AB and BA and show that AB!=BA

If A=[(1,2)], B= [(1),(2)] , then AB =

A={:[(1,2,1),(3,1,4)]:},B={:[(1,-1),(2,3),(-1,1)]:} , verify (AB)'=B'A'

If A=[{:(2,-1),(3,4),(1,5):}]" and "B=[{:(-1,3),(2,1):}] , find AB. Does BA exist?

MOTION-MATRICES -Exercise - 1
  1. <b>a. Row Matrix :</b> Matrix of order 1 xx m is called <b>row matrix<...

    Text Solution

    |

  2. If the matrix AB is a zero matrix, then which one of the following is ...

    Text Solution

    |

  3. Which relation is true for A =[(2,-1),(-1,2)] and B=[(1,4),(-1,1)] (1)...

    Text Solution

    |

  4. If A=[(a,b),(b,a)]and A^(2)=[(alpha,beta),(beta,alpha)], then -

    Text Solution

    |

  5. If A and B are square matrices of order n xx n such that A^2-B^2=(A-B)...

    Text Solution

    |

  6. If A=[(ab,b^2),(-a^2,-ab)], then A is

    Text Solution

    |

  7. A = [[2,-1],[-7,4]] & B =[[4,1],[7,2]] then B^TA^T is :

    Text Solution

    |

  8. If a non-singular matrix and A^(T) denotes the tranpose of A, then

    Text Solution

    |

  9. If A is skew-symmetric matrix, then trace of A is

    Text Solution

    |

  10. If A and B are symmetric matrices, then A B A is

    Text Solution

    |

  11. If A is a skew-symmetric matrix and n is an even natural number,...

    Text Solution

    |

  12. Which one of the following is wrong ?

    Text Solution

    |

  13. [{:(,1,2),(,2,1):}],[{:(,1,2),(,2,1):}]

    Text Solution

    |

  14. If A=[(costheta,-sintheta,0),(sintheta,costheta,0),(0,0,1)], then adj ...

    Text Solution

    |

  15. If A is a squqre matrix such that A^(2)=l, then A^(-1) is equal to

    Text Solution

    |

  16. If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then :

    Text Solution

    |

  17. If A = [[1,2],[3,-5]] and B=[[1,0],[0,2]] and X is a matrix such that ...

    Text Solution

    |

  18. Given A=[(1,3),(2,2)],I=[(1,0),(0,1)]. If A-lambdaI is a singular mat...

    Text Solution

    |

  19. From the matrix equation AB = AC we can conclude B = C provided that

    Text Solution

    |

  20. If A^2-A+I=0, then the invers of A is

    Text Solution

    |