Home
Class 12
MATHS
If A=[(costheta,-sintheta,0),(sintheta,c...

If `A=[(costheta,-sintheta,0),(sintheta,costheta,0),(0,0,1)]`, then `adj A` equals to

A

A

B

I

C

O

D

`A^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Find the Cofactor Matrix The cofactor matrix is obtained by calculating the cofactors for each element of the matrix \( A \). 1. **Cofactor \( C_{11} \)**: - Minor of \( A_{11} \) (remove first row and first column): \[ \text{Minor} = \begin{vmatrix} \cos \theta & 0 \\ 0 & 1 \end{vmatrix} = \cos \theta \] - Cofactor \( C_{11} = (-1)^{1+1} \cdot \text{Minor} = \cos \theta \) 2. **Cofactor \( C_{12} \)**: - Minor of \( A_{12} \) (remove first row and second column): \[ \text{Minor} = \begin{vmatrix} \sin \theta & 0 \\ 0 & 1 \end{vmatrix} = \sin \theta \] - Cofactor \( C_{12} = (-1)^{1+2} \cdot \text{Minor} = -\sin \theta \) 3. **Cofactor \( C_{13} \)**: - Minor of \( A_{13} \) (remove first row and third column): \[ \text{Minor} = \begin{vmatrix} \sin \theta & \cos \theta \\ 0 & 0 \end{vmatrix} = 0 \] - Cofactor \( C_{13} = (-1)^{1+3} \cdot \text{Minor} = 0 \) 4. **Cofactor \( C_{21} \)**: - Minor of \( A_{21} \) (remove second row and first column): \[ \text{Minor} = \begin{vmatrix} -\sin \theta & 0 \\ 0 & 1 \end{vmatrix} = -\sin \theta \] - Cofactor \( C_{21} = (-1)^{2+1} \cdot \text{Minor} = \sin \theta \) 5. **Cofactor \( C_{22} \)**: - Minor of \( A_{22} \) (remove second row and second column): \[ \text{Minor} = \begin{vmatrix} \cos \theta & 0 \\ 0 & 1 \end{vmatrix} = \cos \theta \] - Cofactor \( C_{22} = (-1)^{2+2} \cdot \text{Minor} = \cos \theta \) 6. **Cofactor \( C_{23} \)**: - Minor of \( A_{23} \) (remove second row and third column): \[ \text{Minor} = \begin{vmatrix} \cos \theta & -\sin \theta \\ 0 & 0 \end{vmatrix} = 0 \] - Cofactor \( C_{23} = (-1)^{2+3} \cdot \text{Minor} = 0 \) 7. **Cofactor \( C_{31} \)**: - Minor of \( A_{31} \) (remove third row and first column): \[ \text{Minor} = \begin{vmatrix} -\sin \theta & 0 \\ \cos \theta & 0 \end{vmatrix} = 0 \] - Cofactor \( C_{31} = (-1)^{3+1} \cdot \text{Minor} = 0 \) 8. **Cofactor \( C_{32} \)**: - Minor of \( A_{32} \) (remove third row and second column): \[ \text{Minor} = \begin{vmatrix} \cos \theta & 0 \\ \sin \theta & 0 \end{vmatrix} = 0 \] - Cofactor \( C_{32} = (-1)^{3+2} \cdot \text{Minor} = 0 \) 9. **Cofactor \( C_{33} \)**: - Minor of \( A_{33} \) (remove third row and third column): \[ \text{Minor} = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \cos^2 \theta + \sin^2 \theta = 1 \] - Cofactor \( C_{33} = (-1)^{3+3} \cdot \text{Minor} = 1 \) ### Step 2: Construct the Cofactor Matrix The cofactor matrix is: \[ C = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Transpose the Cofactor Matrix The adjoint of matrix \( A \) is the transpose of the cofactor matrix: \[ \text{adj} A = C^T = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Final Answer Thus, the adjoint of matrix \( A \) is: \[ \text{adj} A = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MOTION|Exercise Exercise - 2(Level-I) (Single correct Option - type Questions)|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 2(Level-II) (Multiple correct Option - type Questions)|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos

Similar Questions

Explore conceptually related problems

If A = ((costheta,-sintheta),(sintheta,costheta)) then

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

Verify that A(adjA)=I when : A=[{:(cos theta, -sintheta,0),(sintheta,costheta,0),(0,0,1):}]

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

If A=[[costheta, sintheta], [-sintheta, costheta]] , then

If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I_2 , if

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

MOTION-MATRICES -Exercise - 1
  1. If A=[(ab,b^2),(-a^2,-ab)], then A is

    Text Solution

    |

  2. A = [[2,-1],[-7,4]] & B =[[4,1],[7,2]] then B^TA^T is :

    Text Solution

    |

  3. If a non-singular matrix and A^(T) denotes the tranpose of A, then

    Text Solution

    |

  4. If A is skew-symmetric matrix, then trace of A is

    Text Solution

    |

  5. If A and B are symmetric matrices, then A B A is

    Text Solution

    |

  6. If A is a skew-symmetric matrix and n is an even natural number,...

    Text Solution

    |

  7. Which one of the following is wrong ?

    Text Solution

    |

  8. [{:(,1,2),(,2,1):}],[{:(,1,2),(,2,1):}]

    Text Solution

    |

  9. If A=[(costheta,-sintheta,0),(sintheta,costheta,0),(0,0,1)], then adj ...

    Text Solution

    |

  10. If A is a squqre matrix such that A^(2)=l, then A^(-1) is equal to

    Text Solution

    |

  11. If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then :

    Text Solution

    |

  12. If A = [[1,2],[3,-5]] and B=[[1,0],[0,2]] and X is a matrix such that ...

    Text Solution

    |

  13. Given A=[(1,3),(2,2)],I=[(1,0),(0,1)]. If A-lambdaI is a singular mat...

    Text Solution

    |

  14. From the matrix equation AB = AC we can conclude B = C provided that

    Text Solution

    |

  15. If A^2-A+I=0, then the invers of A is

    Text Solution

    |

  16. Which of the following is incorrect

    Text Solution

    |

  17. If A is a square matrix of order 3, then the true statement is (where ...

    Text Solution

    |

  18. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |

  19. Let A and B be matrices of order 3 xx 3. If AB = 0, then which of the ...

    Text Solution

    |

  20. Which of the following statements is incorrect for a square matrix A?...

    Text Solution

    |