Home
Class 12
MATHS
If A=[[1,3] , [3,4]] and A^2-kA-5I2=0 th...

If `A=[[1,3] , [3,4]]` and `A^2-kA-5I_2=0` then `k=`

A

3

B

5

C

7

D

-7

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MOTION|Exercise Exercise - 2(Level-II) (Multiple correct Option - type Questions)|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 3(Subjective - type Questions)|30 Videos
  • MATRICES

    MOTION|Exercise Exercise - 1|35 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos

Similar Questions

Explore conceptually related problems

if A=[[1,22,3]] and A^(2)-kA-I_(2)=0 then the value of k is

If A=[[1,2,3],[3,-2,1],[4,2,1]] and A^(3)=40I+KA then the value of 'K' is

If A=([1,0],[1,2]) and A^(8)=KA-lI then K-l

If A=([1,0],[1,2]) and A^(8)=KA-lI then K-l =

If A=[(1,-3), (2,k)] and A^(2) - 4A + 10I = A , then k is equal to

Assertion (A) : If A=[{:(2,3),(5,-2):}] and A^(-1)=kA , then k=(1)/(9) Reason (R ) : |A^(-1)|=(1)/(|A|)

Given that A=[[5,7,3],[1,5,2],[3,2,1]] and A^(3)-kA^(2)+lA=I then

If A={:[(0,5),(4,0)]:}" and "A^(-1)=kA," then: "k=

If A=({:(1,2),(2,3):}) and A^(2) -KA-I_(2)=O," where "I_(2) is the 2xx2 identitiy matrix, then what is the value of k ?

If A=[[3,-24,-2]], find k such that A^(2)-kA-2I_(2)