Home
Class 12
MATHS
If omega is a cube root of unity and A=...

If `omega` is a cube root of unity and `A=[(1,1,1),(1,omega,omega^(2)),(1,omega^(2),omega)]`, then `A^(-1)` equal to

A

`[(1,omega,omega^(2)),(omega^(2),1,omega),(omega,omega^(2),1)]`

B

`(1)/(3)[(1,1,1),(1,omega^(2),omega),(1,omega,omega^(2))]`

C

`[(1,omega,omega^(2)),(1,omega^(2),omega),(1,1,1)]`

D

`(1)/(2)[(1,omega,omega^(2)),(1,omega^(2),omega),(1,1,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) given by \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \] where \( \omega \) is a cube root of unity, we can follow these steps: ### Step 1: Calculate the Determinant of \( A \) The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 1 \cdot (\omega \cdot \omega - \omega^2 \cdot \omega^2) - 1 \cdot (1 \cdot \omega - \omega^2 \cdot 1) + 1 \cdot (1 \cdot \omega^2 - \omega \cdot 1) \] Calculating each term: - \( \omega \cdot \omega - \omega^2 \cdot \omega^2 = \omega^2 - \omega^4 = \omega^2 - 1 \) (since \( \omega^3 = 1 \)) - \( 1 \cdot \omega - \omega^2 \cdot 1 = \omega - \omega^2 \) - \( 1 \cdot \omega^2 - \omega \cdot 1 = \omega^2 - \omega \) Putting it all together: \[ \text{det}(A) = 1(\omega^2 - 1) - 1(\omega - \omega^2) + 1(\omega^2 - \omega) \] Simplifying: \[ \text{det}(A) = \omega^2 - 1 - \omega + \omega^2 + \omega^2 - \omega = 3\omega^2 - 2\omega - 1 \] ### Step 2: Calculate the Adjoint of \( A \) The adjoint of a matrix is the transpose of its cofactor matrix. We will calculate the cofactors for each element of \( A \). 1. For element \( a_{11} = 1 \): \[ C_{11} = \text{det} \begin{pmatrix} \omega & \omega^2 \\ \omega^2 & \omega \end{pmatrix} = \omega^2 - \omega^4 = \omega^2 - 1 \] 2. For element \( a_{12} = 1 \): \[ C_{12} = -\text{det} \begin{pmatrix} 1 & \omega^2 \\ 1 & \omega \end{pmatrix} = -(\omega - \omega^2) \] 3. For element \( a_{13} = 1 \): \[ C_{13} = \text{det} \begin{pmatrix} 1 & \omega \\ 1 & \omega^2 \end{pmatrix} = \omega^2 - \omega \] Continuing this for all elements, we find the cofactor matrix and then transpose it to get the adjoint. ### Step 3: Calculate the Inverse of \( A \) The inverse of a matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the determinant and the adjoint we calculated: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] ### Final Result After calculating the adjoint and the determinant, we can express \( A^{-1} \) in terms of the computed values.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MOTION|Exercise Exercise - 2(Level-II) (Multiple correct Option - type Questions)|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 3(Subjective - type Questions)|30 Videos
  • MATRICES

    MOTION|Exercise Exercise - 1|35 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos

Similar Questions

Explore conceptually related problems

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a cube root of unity,then (1+omega)^(3)-(1+omega^(2))^(3)=

If omega is a cube root of unity, prove that (1+omega-omega^2)^3-(1-omega+omega^2)^3=0

If omega is a cube root of unity and /_=det[[1,2 omegaomega,omega^(2)]], then /_^(2) is equal to (A) -omega(B)omega(C)1(D)omega^(2)

If (omega!=1) is a cube root of unity then omega^(5)+omega^(4)+1 is

If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1),(omega,omega^(2),1+x),(1,x+omega,omega^(2))|=0 then value of x is

omega is a complex cube root of unity,then (1-omega)(1-+-ega^(2))(1-omega^(4))(1-omega^(8))