Home
Class 12
MATHS
If, E=[(0,1,0),(0,0,1),(0,0,0)]and F=[(0...

If, `E=[(0,1,0),(0,0,1),(0,0,0)]and F=[(0,0,0),(1,0,0),(0,1,0)]` calculate the matrix product EF & FE and show that `E^(2)F+FE^(2)=E`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the matrix products \( EF \) and \( FE \), and then show that \( E^2F + FE^2 = E \). ### Step 1: Define the matrices Let: \[ E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \] ### Step 2: Calculate \( EF \) To find \( EF \), we perform matrix multiplication: \[ EF = E \cdot F = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \] Calculating each element: - First row, first column: \( 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 = 1 \) - First row, second column: \( 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0 \) - First row, third column: \( 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 = 0 \) - Second row, first column: \( 0 \cdot 0 + 0 \cdot 1 + 1 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 = 1 \) - Second row, third column: \( 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 0 = 0 \) - Third row, first column: \( 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \) - Third row, second column: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 = 0 \) - Third row, third column: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) Thus, we have: \[ EF = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Step 3: Calculate \( FE \) Now, we calculate \( FE \): \[ FE = F \cdot E = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \] Calculating each element: - First row, first column: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - First row, second column: \( 0 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - First row, third column: \( 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \) - Second row, first column: \( 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - Second row, second column: \( 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 = 1 \) - Second row, third column: \( 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \) - Third row, first column: \( 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 = 0 \) - Third row, second column: \( 0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 = 0 \) - Third row, third column: \( 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 = 1 \) Thus, we have: \[ FE = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Calculate \( E^2 \) Next, we calculate \( E^2 \): \[ E^2 = E \cdot E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \] Calculating each element: - First row, first column: \( 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 = 0 \) - First row, second column: \( 0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 = 0 \) - First row, third column: \( 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 = 1 \) - Second row, first column: \( 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 = 0 \) - Second row, third column: \( 0 \cdot 0 + 0 \cdot 1 + 1 \cdot 0 = 0 \) - Third row, first column: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - Third row, second column: \( 0 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - Third row, third column: \( 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \) Thus, we have: \[ E^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Step 5: Calculate \( E^2F \) and \( FE^2 \) Now we calculate \( E^2F \): \[ E^2F = E^2 \cdot F = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \] Calculating each element: - First row, first column: \( 0 \cdot 0 + 0 \cdot 1 + 1 \cdot 0 = 0 \) - First row, second column: \( 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 = 1 \) - First row, third column: \( 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 0 = 0 \) - Second row, first column: \( 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, third column: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - Third row, first column: \( 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \) - Third row, second column: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 = 0 \) - Third row, third column: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) Thus, we have: \[ E^2F = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] Now we calculate \( FE^2 \): \[ FE^2 = F \cdot E^2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] Calculating each element: - First row, first column: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - First row, second column: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - First row, third column: \( 0 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - Second row, first column: \( 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - Second row, second column: \( 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - Second row, third column: \( 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 = 1 \) - Third row, first column: \( 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 = 0 \) - Third row, second column: \( 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 = 0 \) - Third row, third column: \( 0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 = 0 \) Thus, we have: \[ FE^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \] ### Step 6: Calculate \( E^2F + FE^2 \) Now we add \( E^2F \) and \( FE^2 \): \[ E^2F + FE^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \] Calculating each element: - First row, first column: \( 0 + 0 = 0 \) - First row, second column: \( 1 + 0 = 1 \) - First row, third column: \( 0 + 0 = 0 \) - Second row, first column: \( 0 + 0 = 0 \) - Second row, second column: \( 0 + 0 = 0 \) - Second row, third column: \( 0 + 1 = 1 \) - Third row, first column: \( 0 + 0 = 0 \) - Third row, second column: \( 0 + 0 = 0 \) - Third row, third column: \( 0 + 0 = 0 \) Thus, we have: \[ E^2F + FE^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \] ### Step 7: Conclusion We compare \( E^2F + FE^2 \) with \( E \): \[ E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \] Since \( E^2F + FE^2 = E \), we have shown that: \[ E^2F + FE^2 = E \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MOTION|Exercise Exercise - 3(Comprehension - based Questions)|3 Videos
  • MATRICES

    MOTION|Exercise Exercise - 3(Matrix Match - type Questions)|1 Videos
  • MATRICES

    MOTION|Exercise Exercise - 2(Level-II) (Multiple correct Option - type Questions)|7 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos

Similar Questions

Explore conceptually related problems

Let I=((1,0,0),(0,1,0),(0,0,1)) and P=((1,0,0),(0,-1,0),(0,0,-2)) . Then the matrix p^3+2P^2 is equal to

The matrix [(1,0,0),(0,2,0),(0,0,4)] is a

Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1, 0),(0,0,-2):}] . Then the matrix p^(3) + 2P^(2) is equal to

The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

If I=[[1,0],[0,1]] , E=[[0,1],[0,0]] then (aI+bE)^(3)=

If A= [(0,1,1),(0,0,1),(0,0,0)] is a matrix of order 3 then the value of the matrix (I+A)-2A^2(I-A), where I is a unity matrix is equal to (A) [(1,0,0),(1,1,0),(1,1,1)] (B) [(1,-1,-1),(0,1,-1),(0,0,1)] (C) [(1,1,-1),(0,1,1),(0,0,1)] (D) [(0,0,2),(0,0,0),(0,0,0)]

If f(x)={(x)/(e^((1)/(x))+1),x!=0 and 0,x=0

The inverse of the matrix [(0,0,1),(0,1,0),(1,0,0)] is (A) [(0,0,1),(0,1,0),(1,0,0)] (B) [(0,0,-1),(0,-1,0),(-1,0,0)] (C) [(1,0,0),(0,1,0),(0,0,1)] (D) [(1/2,0,0),(0,1/2,0),(0,0,1/2)]

If I=[[1,0],[0,1]] and E=[[0,1],[0,0]] prove that (2I+3E)^3=8I+36E

MOTION-MATRICES -Exercise - 3(Subjective - type Questions)
  1. If A and B are non-zero square matrices of same order such that AB=A a...

    Text Solution

    |

  2. If A=[(ab,b^2),(-a^2,-ab)], then A is

    Text Solution

    |

  3. If, E=[(0,1,0),(0,0,1),(0,0,0)]and F=[(0,0,0),(1,0,0),(0,1,0)] calcula...

    Text Solution

    |

  4. A is a square matrix of order n. l = maximum number of distinct ent...

    Text Solution

    |

  5. (i) Prove that (adj adj A) = |A|^(n – 2) A (ii) Find the value of |...

    Text Solution

    |

  6. For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0....

    Text Solution

    |

  7. If A-^1=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^(-...

    Text Solution

    |

  8. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |

  9. Given A=[[2,0,-alpha],[5,alpha,0],[0,alpha,3]] For a in R-{a, b}, A^(-...

    Text Solution

    |

  10. Compute A^(-1) for the following matrix A=[(-1,2,5),(2,-3,1),(-1,1,1)...

    Text Solution

    |

  11. For the matrix A=[(4,-4,5),(-2,3,-3),(3,-3,4)] find A^(-2) .

    Text Solution

    |

  12. Gaurav purchases 3 pens, 2 bags and 1 instrument box and pays Rs. 41. ...

    Text Solution

    |

  13. Solve the following system of linear equations by using the principle ...

    Text Solution

    |

  14. Solve the following system of linear equations by using the principle ...

    Text Solution

    |

  15. By using the principle of matrix, show that the following system of eq...

    Text Solution

    |

  16. Find the number of 2xx2 matrix satisfying (i) aij is 1 or -1 (ii) ...

    Text Solution

    |

  17. If A = [[0, 1],[3,0]]and (A^(8) + A^(6) + A^(4) + A^(2) + I) V= [[0],[...

    Text Solution

    |

  18. If the matrices A=[(1,2),(3,4)] and B=[(a,b),(c,d)] (a,b,cd not all si...

    Text Solution

    |

  19. If [a b c1-a] is an idempotent matrix and f(x)=x-^2=b c=1//4 , then th...

    Text Solution

    |

  20. If the matrix A is involutary, show that (1)/(2)(I+A) and (1)/(2)(I-A)...

    Text Solution

    |