Home
Class 12
MATHS
Solve the following system of linear equ...

Solve the following system of linear equations by using the principle of matrix.
`2x-y+3z=8`
`-x+2y+z=4`
`3x+y-4z=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of linear equations using matrix principles, we can follow these steps: ### Step 1: Write the equations in matrix form The given equations are: 1. \(2x - y + 3z = 8\) 2. \(-x + 2y + z = 4\) 3. \(3x + y - 4z = 0\) We can express this system in the form \(Ax = B\), where: \[ A = \begin{pmatrix} 2 & -1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & -4 \end{pmatrix}, \quad x = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 8 \\ 4 \\ 0 \end{pmatrix} \] ### Step 2: Find the inverse of matrix \(A\) To find the solution \(x\), we need to calculate \(A^{-1}\). The formula for the inverse of a matrix is: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] #### Step 2.1: Calculate the determinant of \(A\) The determinant \(\text{det}(A)\) can be calculated as follows: \[ \text{det}(A) = 2 \cdot (2 \cdot -4 - 1 \cdot 1) - (-1) \cdot (-1 \cdot -4 - 1 \cdot 3) + 3 \cdot (-1 \cdot 1 - 2 \cdot 3) \] Calculating each term: - First term: \(2 \cdot (-8 - 1) = 2 \cdot -9 = -18\) - Second term: \(-1 \cdot (4 - 3) = -1 \cdot 1 = -1\) - Third term: \(3 \cdot (-1 - 6) = 3 \cdot -7 = -21\) Thus, \[ \text{det}(A) = -18 - 1 - 21 = -40 \] #### Step 2.2: Calculate the adjoint of \(A\) The adjoint of \(A\) is calculated by finding the cofactor matrix and then transposing it. The cofactor matrix is obtained by calculating the determinants of the 2x2 minors and applying the checkerboard pattern of signs. The cofactor matrix is: \[ \text{cof}(A) = \begin{pmatrix} \text{det}\begin{pmatrix} 2 & 1 \\ 1 & -4 \end{pmatrix} & -\text{det}\begin{pmatrix} -1 & 1 \\ 3 & -4 \end{pmatrix} & \text{det}\begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} \\ -\text{det}\begin{pmatrix} -1 & 1 \\ 1 & -4 \end{pmatrix} & \text{det}\begin{pmatrix} 2 & 3 \\ 3 & -4 \end{pmatrix} & -\text{det}\begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix} \\ \text{det}\begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix} & -\text{det}\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} & \text{det}\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \end{pmatrix} \] Calculating each determinant: 1. \(2 \cdot (-4) - 1 \cdot 1 = -8 - 1 = -9\) 2. \((-1)(-4) - 1(3) = 4 - 3 = 1\) 3. \((-1)(1) - 2(3) = -1 - 6 = -7\) 4. \((-1)(-4) - 1(1) = 4 - 1 = 3\) 5. \(2(-4) - 3(3) = -8 - 9 = -17\) 6. \(2(1) - (-1)(3) = 2 + 3 = 5\) 7. \((-1)(1) - 2(2) = -1 - 4 = -5\) 8. \((-1)(-1) - (-1)(2) = 1 + 2 = 3\) 9. \(2(2) - (-1)(-1) = 4 - 1 = 3\) Thus, the cofactor matrix is: \[ \text{cof}(A) = \begin{pmatrix} -9 & -1 & -7 \\ -3 & -17 & 5 \\ -5 & 3 & 3 \end{pmatrix} \] Now, transpose this matrix to get the adjoint: \[ \text{adj}(A) = \begin{pmatrix} -9 & -3 & -5 \\ -1 & -17 & 3 \\ -7 & 5 & 3 \end{pmatrix} \] ### Step 3: Calculate \(x = A^{-1}B\) Now, we can find \(A^{-1}\) using: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{-40} \begin{pmatrix} -9 & -3 & -5 \\ -1 & -17 & 3 \\ -7 & 5 & 3 \end{pmatrix} \] ### Step 4: Multiply \(A^{-1}\) with \(B\) Now, we multiply \(A^{-1}\) with \(B\): \[ x = A^{-1}B = \frac{1}{-40} \begin{pmatrix} -9 & -3 & -5 \\ -1 & -17 & 3 \\ -7 & 5 & 3 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \\ 0 \end{pmatrix} \] Calculating the product: 1. First row: \(-9 \cdot 8 + (-3) \cdot 4 + (-5) \cdot 0 = -72 - 12 + 0 = -84\) 2. Second row: \(-1 \cdot 8 + (-17) \cdot 4 + 3 \cdot 0 = -8 - 68 + 0 = -76\) 3. Third row: \(-7 \cdot 8 + 5 \cdot 4 + 3 \cdot 0 = -56 + 20 + 0 = -36\) So, \[ x = \frac{1}{-40} \begin{pmatrix} -84 \\ -76 \\ -36 \end{pmatrix} = \begin{pmatrix} 2.1 \\ 1.9 \\ 0.9 \end{pmatrix} \] ### Final Result Thus, the solution to the system of equations is: \[ x = 2, \quad y = 2, \quad z = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MOTION|Exercise Exercise - 3(Comprehension - based Questions)|3 Videos
  • MATRICES

    MOTION|Exercise Exercise - 3(Matrix Match - type Questions)|1 Videos
  • MATRICES

    MOTION|Exercise Exercise - 2(Level-II) (Multiple correct Option - type Questions)|7 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of linear equations by using the principle of matrix. x+y+z=8 2x+5y+7z=52 2x+y-z=0

Solve the following system of linear equations by matrix method: x+y+z=3,2x-y+z=2,x-2y=3z=2

Solve the following systems of liner a equations by cramer rule . (i)2x-y+3z=8 -x+2y+z=4 3x+y-4z=0

Solve the following system of linear equations by Cramers rule: x+y=5,\ \ y+z=3,\ \ x+z=4

Solve the following system of linear equations by Cramers rule: x-4y-z=11 ,\ \ \ 2x-5y+2z=39 ,\ \ -3x+2y+z=1

Solve the following simultaneous linear equations by using matrix inversion method x+y+z=1 2x+2y+3z=6 x+4y+9z=3

Solve the following system of linear equations by matrix method: 2x+3y+3z=1,2x+2y+3z=2,x-2y+2z=3

Solve the following system of the linear equations by cramer's rule 3x+y+z=2,2x-4y+3z=-1 and 4x+y-3z=-11

Solve the following system of equations, using Cramer'e rule : x+y+3z=6 , x-3y-3z=-4 , 5x-3y+3z=8

Solve the following system of homogeneous linear equations by matrix method: 2x-y+z=0,\ \ 3x+2y-z=0,\ \ x+4y+3z=0

MOTION-MATRICES -Exercise - 3(Subjective - type Questions)
  1. For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0....

    Text Solution

    |

  2. If A-^1=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^(-...

    Text Solution

    |

  3. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |

  4. Given A=[[2,0,-alpha],[5,alpha,0],[0,alpha,3]] For a in R-{a, b}, A^(-...

    Text Solution

    |

  5. Compute A^(-1) for the following matrix A=[(-1,2,5),(2,-3,1),(-1,1,1)...

    Text Solution

    |

  6. For the matrix A=[(4,-4,5),(-2,3,-3),(3,-3,4)] find A^(-2) .

    Text Solution

    |

  7. Gaurav purchases 3 pens, 2 bags and 1 instrument box and pays Rs. 41. ...

    Text Solution

    |

  8. Solve the following system of linear equations by using the principle ...

    Text Solution

    |

  9. Solve the following system of linear equations by using the principle ...

    Text Solution

    |

  10. By using the principle of matrix, show that the following system of eq...

    Text Solution

    |

  11. Find the number of 2xx2 matrix satisfying (i) aij is 1 or -1 (ii) ...

    Text Solution

    |

  12. If A = [[0, 1],[3,0]]and (A^(8) + A^(6) + A^(4) + A^(2) + I) V= [[0],[...

    Text Solution

    |

  13. If the matrices A=[(1,2),(3,4)] and B=[(a,b),(c,d)] (a,b,cd not all si...

    Text Solution

    |

  14. If [a b c1-a] is an idempotent matrix and f(x)=x-^2=b c=1//4 , then th...

    Text Solution

    |

  15. If the matrix A is involutary, show that (1)/(2)(I+A) and (1)/(2)(I-A)...

    Text Solution

    |

  16. A(3xx3) is a matrix such that |A|-a,R=(adj A) such that |B|=b. Find...

    Text Solution

    |

  17. Use matrix to solve the following system of equations. x+y+z=3 x+...

    Text Solution

    |

  18. Use matrix to solve the following system of equations. x+y+z=6 x-y...

    Text Solution

    |

  19. Use matrix to solve the following system of equations. x+y+z=3 x+2...

    Text Solution

    |

  20. Use matrix to solve the following system of equations. x+y+z=3 x+...

    Text Solution

    |