Home
Class 12
MATHS
Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1)...

Let `A=((1,0,0),(2,1,0),(3,2,1))`. If `u_(1)` and `u_(2)` are column matrices such that `Au_(1)=((1),(0),(0))` and `Au_(2)=((0),(1),(0))`, then `u_(1)+u_(2)` is equal to :

A

`[(-1),(1),(0)]`

B

`[(-1),(1),(-1)]`

C

`[(-1),(-1),(0)]`

D

`[(1),(-1),(-1)]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos
  • MATRICES

    MOTION|Exercise Exercise - 3(Matrix Match - type Questions)|1 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos

Similar Questions

Explore conceptually related problems

If A =((1,0,0),(2,1,0),(3,2,1)) u_(1) and u_(2) are the column matrices such that Au_(1) = ((1),(0),(0))and Au_(2) = ((0),(1),(0))" then " u_(1) + u_(2) is equal to

If A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3) are column matrices satisfying AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1)) and U is 3xx3 matrix when columns are U_(1), U_(2), U_(3) then answer the following questions The value of (3 2 0) U((3),(2),(0)) is

Let A""=(1 0 0 2 1 0 3 2 1) If u_1 and u_2 are column matrices such that A u_1=(1 0 0) and A u_2=(0 1 0) , then u_1+""u_2 is equal to (1) (-1 1 0) (2) (-1 1-1) (3) (-1-1 0) (4) (1-1-1)

Let A=[(1,0,0),(2,1,0),(3,2,1)], if U_1, U_2 and U_3 are column matrices satisfying AU_1 =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The sum of elements of U^-1 is: (A) -1 (B) 0 (C) 1 (D) 3

Let A=[(1,0,0),(2,1,0),(3,2,1)], it U_1, U_2 and U_3 are column matrices satisfying AU_1 =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The value of |U| is (A) 3 (B) -3 (C) 3/2 (D) 2

Let A=[(1,0,0),(2,1,0),(3,2,1)], it U_1, U_2 and U_3 are column matrices satisfying AU_ =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The value of determinant [(3,2,0)] I[(3),(2),(0)] is (A) 5 (B) 5/2 (C) 4 (D) 3/2

Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U_1,U_2,U_3 be column matrices satisfying {:AU_1[(1),(0),(0)],AU_2[(2),(3),(6)],AU_3[(2),(3),(1)]:} .If U is 3xx3 matrix whose columns are U_1,U_2,U_3," then "absU=

MOTION-MATRICES -Exercise - 4 (Level-I)
  1. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  2. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] , then which one of the fo...

    Text Solution

    |

  3. If A and B are square matrices of order n xx n such that A^2-B^2=(A-B)...

    Text Solution

    |

  4. Let {:A=[(1,2),(3,4)]and BA=[(a,0),(0,b)]:},a,b in N Then,

    Text Solution

    |

  5. Let A=[5 5alphaalpha0alpha5alpha0 0 5]dot"I f"|A^2|=25 , then |alpha| ...

    Text Solution

    |

  6. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  7. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  8. The number of 3 3 non-singular matrices, with four entries as 1 and ...

    Text Solution

    |

  9. Let A be a 2xx2 matrix with non-zero entries and let A^2=""I , whe...

    Text Solution

    |

  10. If omega !=1 is the complex cube root of unity and matrix H=[(omega,...

    Text Solution

    |

  11. Let A and B be two symmetric matrices of order 3. Statement-1 : A(BA) ...

    Text Solution

    |

  12. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  13. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  14. Let P and Q be 3xx3 matrices with P!=Q . If P^3=""Q^3a n d""P^2Q""=""Q...

    Text Solution

    |

  15. If P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of a 3 x 3 matrix ...

    Text Solution

    |

  16. If A is a 3 xx 3 non-singular matrix such that A A^(T) = A^(T)A " and ...

    Text Solution

    |

  17. If A=[1 2 2 2 1-2a2b] is a matrix satisfying the equation AA^T=""9I , ...

    Text Solution

    |

  18. If A=|{:(,5a,-b),(,3,2):}| and A adj A=A A^(T), then 5a+b is equal to

    Text Solution

    |

  19. If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

    Text Solution

    |