Home
Class 12
MATHS
Choose the correct answer intsqrt(1+x^2...

Choose the correct answer
`intsqrt(1+x^2)dx` is equal to

A

`x/2sqrt(1+x^2)+1/2log|(x+sqrt(x+x^2))|+C`

B

`2/3(1+x^2)^(3/2)+C`

C

`2/3x(1+x^2)^(3/2)+C`

D

`(x^2)/2sqrt(1+x^2)+1/2x^2log|x+sqrt(1+x^2)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{1+x^2} \, dx\), we can use a trigonometric substitution. Here are the steps to arrive at the solution: ### Step 1: Trigonometric Substitution Let \(x = \tan(\theta)\). Then, we have: \[ dx = \sec^2(\theta) \, d\theta \] And, using the identity \(1 + \tan^2(\theta) = \sec^2(\theta)\), we can rewrite the integral: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] ### Step 2: Substitute into the Integral Now substituting \(x\) and \(dx\) into the integral: \[ \int \sqrt{1+x^2} \, dx = \int \sec(\theta) \cdot \sec^2(\theta) \, d\theta = \int \sec^3(\theta) \, d\theta \] ### Step 3: Integrate \(\sec^3(\theta)\) The integral of \(\sec^3(\theta)\) can be computed using the formula: \[ \int \sec^3(\theta) \, d\theta = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln |\sec(\theta) + \tan(\theta)| + C \] ### Step 4: Substitute Back Now we need to substitute back in terms of \(x\): - Since \(x = \tan(\theta)\), we have \(\tan(\theta) = x\) and \(\sec(\theta) = \sqrt{1+x^2}\). Thus: \[ \sec(\theta) \tan(\theta) = \sqrt{1+x^2} \cdot x \] And: \[ \sec(\theta) + \tan(\theta) = \sqrt{1+x^2} + x \] ### Step 5: Final Result Putting everything together, we get: \[ \int \sqrt{1+x^2} \, dx = \frac{1}{2} x \sqrt{1+x^2} + \frac{1}{2} \ln |\sqrt{1+x^2} + x| + C \] ### Conclusion Thus, the final answer is: \[ \int \sqrt{1+x^2} \, dx = \frac{1}{2} x \sqrt{1+x^2} + \frac{1}{2} \ln |\sqrt{1+x^2} + x| + C \]

To solve the integral \(\int \sqrt{1+x^2} \, dx\), we can use a trigonometric substitution. Here are the steps to arrive at the solution: ### Step 1: Trigonometric Substitution Let \(x = \tan(\theta)\). Then, we have: \[ dx = \sec^2(\theta) \, d\theta \] And, using the identity \(1 + \tan^2(\theta) = \sec^2(\theta)\), we can rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    NCERT|Exercise MISCELLANEOUS EXERCISE|44 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

intsqrt(1+cos x )dx is equal to

intsqrt(1+sin2x)dx is equal to

intsqrt(x^(2)+2x+5)dx is equal to

intsqrt(e^(x)-1)dx is equal to

intsqrt(1+x)dx

intsqrt(x^(2)+x)dx

intsqrt(x^(2)-2)dx

intsqrt(x^(2)+5)dx

intsqrt(4-x^(2))dx

intsqrt(x^(2)-5)dx