Home
Class 12
MATHS
1+i^2+i^4+i^6+.........+i^(2n)=...

`1+i^2+i^4+i^6+.........+i^(2n)=`

A

positive

B

negative

C

0

D

cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 1)|6 Videos
  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 2)|6 Videos
  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos
  • COORDINATE SYSTEM (2D)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|12 Videos

Similar Questions

Explore conceptually related problems

Simplifiy i^(2)+i^(4)+i^(6)+.....+(2n+1) terms

If n is integer then show that (1 + i)^(2n) + (1 - i)^(2n) = 2 ^(n+1) cos . (npi)/2 .

i+ i^(2) + i^(3) + i^(4) + …. + i^(100)

If i= sqrt-1 and n is a positive integer , then i^(n) + i^(n + 1) + i^(n + 2) + i^(n + 3) is equal to

If n is a positive integer, show that (1 + i)^(n) + (1 - i)^(n) = 2 ^((n+2)/2) cos ((npi)/4) .

Simplify i^18-3i^7 +i^2 (1 +i^4) (-i)^26 .

i+ 2i^(2) + 3i^(3) + 4i^(4) + …. + 100i^(100) =

The value of ((1 + i)^(2n + 1))/((1- i)^(2n -1)) =

If (1-i)(2-i)(3-i)....(1-ni)=x- iy then prove that 2.510..... (1+n)^(2)=x^(2)+y^(2)

The descending order of the moduli of z_(1) = (3 - 4i) (4 + 3i) , z_(2) = (3 + 4i)/(1 +i) , z_(3) = ((3 + i) (2- i))/(1+ i) , z_(4) = 5 + 12 i is