Home
Class 12
MATHS
If u+iv=(2+i)/(z+3) and z=x+iy find u, v...

If `u+iv=(2+i)/(z+3) and z=x+iy` find u, v

A

`(2(x+3)+y)/((x+3)^2+y^2)+,(x-2y+3)/((x+3)^2+y^2)`

B

`(2(x+2)+y)/((x+2)^2+y^2),(x-2y+3)/((x+2)^2+y^2)`

C

`(2(x+4)+y)/((x+4)^2+y^2)+,(x-2y+3)/((x+4)^2+y^2)`

D

none

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 1)|6 Videos
  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 2)|6 Videos
  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos
  • COORDINATE SYSTEM (2D)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|12 Videos

Similar Questions

Explore conceptually related problems

If Arg ((2 - z)/(2 + z)) = (pi)/(6) and z = x + iy , then the locus of z is

If u+iv=(3i)/(x+iy+2), then y in terms of u,v is

If u + iv = (3i)/(x + iy + 2) , then y in terms of u , v is

If z=x+iy and |z|=1 , find the locus of z

The locus of z satisfying the inequality |(z+2i)/(2z+i)|lt1 where z = x + iy , is :

If z = (x + iy) and if the point P in the Argand plane represents z , then discribe geometrically the locus of P satisfying the equations |z + i|^(2) - |z - i|^(2) = 2

If alpha + ibeta = tan^(-1) (z) , z = x +iy and alpha is constant then the locus of z is