Home
Class 12
MATHS
int e^(3logx)dx=...

`int e^(3logx)dx=`

A

`(x^(3))/(3)+c`

B

`(x^(3))/(3)+c`

C

`(x^(4))/(4)+c`

D

`(x^(4))/(3)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|109 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int e^(3-5x)dx=

Evaluate the following inegrals inte^(2logx)dx

Find the values of the following integrals int (e^(logx))/(x)dx

int 7e^(x) dx

int ((e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx)))dx=

For x gt 0 , if int(logx)^(5)dx=x(A(logx)^(5)+B(logx)^(4)+C(logx)^(3)+D(logx)^(2)+E(logx)+F])+ constant then A+B+C+D+E+F =

Evaluate the following integrals. int(e^(logx))/(x)dx