Home
Class 12
MATHS
int 2^(3x)3^(2x) 5^(x)dx=...

`int 2^(3x)3^(2x) 5^(x)dx=`

A

`(2^(3x)3^(2x)5^(x))/(log (720))+c`

B

`(2^(3x)3^(2x)5^(x))/(log (360))+c`

C

`(2^(3x)3^(2x)5^(x))/(log (180))+c`

D

`(2^(3x)3^(2x)5^(x))/(log (90))+ce`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|109 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

If int (2^(x) 3^(x))/(5^(2x). 7^(x)) dx = (1)/(k) ((2^(x).3^(x))/(5^(2x).7^(x))) + c then k =

int e^(x)(x^(2)+2x+3)dx=

int (3x+4)/(x^(2)+2x+3)dx=

int_(2)^(3) (2x)(1+x^2) dx

int x^(3)*e^(x^(2))dx=

Find the values of the following integrals int(2x^(3)-3x+5)/(2x^(2))dx

If int_(-3)^(2) f(x)dx= 7/3 and int_(-3)^(9) f(x)dx= - 5/6 then int_(2)^(9) f(x)dx=

int (x^(3)+2x)/(x^(4)+4)dx=

int (1)/(2x^(2)+3x-5)dx=