Home
Class 12
MATHS
int e^(x log a) e^(x)dx=...

`int e^(x log a) e^(x)dx=`

A

`e^(xloga)+e^(x)+c`

B

`((ae)^(x))/(log ae)+c`

C

`(x^(x))/(1+log a)+c`

D

`((ae^(x)))/(log a)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|109 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

Evalute the following integrals int e^(x) "cot " e^(x) dx

int e^(log x) .sinx dx =

Evaluate the integerals. int e ^(x) log (e ^(2x) +5e^(x) +6)dx on R.

Evalute the following integrals int e^(2 log" cot x") dx =

Evaluate the integerals. int e ^(x) . cot e ^(x) dx, x in I sub \\{log n pi : n in X}.

int 7e^(x) dx

int e^(x) (x+1) log x dx=

int e^("log "x) cos x dx =

A: int e^(x)((1+x log x)/(x))=e^(x)log x+c R: int e^(x)[f(x)+f'(x)]dx=e^(x)f(x)+c

Evaluate the integerals. int (e ^(log x))/(x ) dx on (0,oo).