Home
Class 12
MATHS
int sec^(2) x tan^(2) x dx=...

`int sec^(2) x tan^(2) x dx=`

A

`(1)/(2) tan^(3)x+c`

B

` tan^(3)x+c`

C

`(1)/(3) tan^(3)x+c`

D

none

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|109 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2) x + c Reason (R) : int (x f^(1) (x) +int(x) ) dx = x f(x) + c The correct answer is

int sec^(m) x* tan x dx=

int sin^(2)x sec^(2) x dx =

Evalute the following integrals int (sec^(2) "x tan x")/(sec^(2) x + tan^(2) x) dx

int sec^(2)5x dx=

int sec^(2)"cosec"^(2) x dx=

int sec^(5)x dx.

int sec^(4)x dx=

Evaluate int x^(2) tan^(-1) x dx