Home
Class 12
MATHS
int tan^(4) x dx=...

`int tan^(4) x dx=`

A

`(1)/(3) tan^(3)x +x+c`

B

`tan^(3) x-tanx-x+c`

C

`(1)/(3)tan^(3)-tan x+x+c`

D

`tan^(3) x-tan x+x+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|109 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate int tan^(6) x dx

Evalute the following integrals int tan^(2) x dx

Evaluate int tan ^(6) x dx.

int_(0)^(pi//4) tan^(6) x dx=

int_(0)^(pi//4) tan^(5) x dx=

Evalute the following integrals int tan^(4) x sec^(2) x dx

Evaluate the integerals. int tan^(4) xsec ^(2) x dx , x in I sub R \\ { ((2n +1)pi)/(2): n in Z}.

int x Tan^(-1) x dx=

int sin (tan^(-1) x) dx =

int x tan ^(-1) x dx, x in R.