Home
Class 12
MATHS
int (1+2) tan x(tan x+ sec x)}^(1//2) dx...

`int (1+2) tan x(tan x+ sec x)}^(1//2) dx=`

A

`log |sec x(sec x-tanx )|+c`

B

`log |sec x(sec x+tanx )|+c`

C

`log|(sc x)/( sec x+tan x)|+c`

D

`log|cos x (sec x+tan x)|+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|109 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int (tan x - cot x )^(2) dx =

int sqrt(tan x) sec^(2) x dx =

int (1-tanx)/(1+tan x)dx=

int (tan x-tan x//2)/(1+ tan x tan x//2)dx=

Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2) x + c Reason (R) : int (x f^(1) (x) +int(x) ) dx = x f(x) + c The correct answer is

int x sec x tan x dx=

Evaluate int e^(-2x) [ 2" tan x " - sec^(2) x ] dx

Evaluate the following integrals int e^(x) (tan x + sec^(2) x ) dx

int e^(x) (tan x tan^(2) x ) dx =

int (1 + tan^(2) x)/(1 -tan^(2) x) dx =