Home
Class 12
MATHS
int (sec^(2)x)/(log (tanx)^(tanx))dx=...

`int (sec^(2)x)/(log (tanx)^(tanx))dx=`

A

`log|log (tan x)^(tanx)|+c`

B

`log (tanx)+c`

C

`log |log(tanx)|+c`

D

`log|(log tanx)/(tan x)|+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|109 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int (sec^(2)x)/(3+4tanx)dx=

int (sec^(2)x)/(sqrt(tan^(2)x-2tanx+5))dx=

Evaluate the following integrals. int(sec^(2)x)/((1+tanx))dx

Evalute the following integrals int ("sec x cos ecx")/(log (tan x)) dx

int (1-tanx)/(1+tan x)dx=

int_(0)^(pi//2)log(tanx)dx=

Evaluate the following integrals. int(secx)/((secx+tanx)^(n))dx

inte^(x)((sec^(2)x+tanx-cotx)/(sinx))dx=

int (tanx)/(1+tan^(2)x)dx=

Evaluate the following inegrals int(secxcosecx)/(log(tanx))dx