Home
Class 12
MATHS
int (sec^(2)x)/(3+4tanx)dx=...

`int (sec^(2)x)/(3+4tanx)dx=`

A

`(1)/(2) log |2+4tan x|+c`

B

`(1)/(4) log |3+4tan x|+c`

C

`(1)/(4) log |3-4tan x|+c`

D

`(1)/(4) log |2+3tan x|+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|109 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

If int (sec^(2) x)/(3 + 4 tan x) dx = K log | 3 + 4 tan x | + C then 1/K =

Evaluate the following integrals. int(sec^(2)x)/((1+tanx))dx

int (sec^(2)x)/(log (tanx)^(tanx))dx=

int sec^(2) x tan^(2) x dx=

int (sec^(2)x)/(sqrt(tan^(2)x-2tanx+5))dx=

int (sec^(2)x)/((sec x+ tan x)^(5))dx=

Evaluate the integerals. int (sec ^(2) x)/((1+tan x)^(3))dx on I sub R \\{n pi -(pi)/(4) : n in Z}.

Evalute the following integrals int (sec^(2) x)/( ( 1 + tan x )^(3)) dx

int sec^(2)5x dx=

int sec^(4)x dx=