Home
Class 12
MATHS
int ["tan"(x)/(2)+"tan" ((pi)/(2)-(x)/(2...

`int ["tan"(x)/(2)+"tan" ((pi)/(2)-(x)/(2))]dx=`

A

`2 log |tan x//2)|`+c

B

`2 log |sinx//2+co x//2)|+c`

C

`log |cot x//2|+c`

D

none

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|132 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|109 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

int ((x)/(2)"sec"^(2)(x)/(2)+"tan"^(x)/(2))dx

int (tanx)/(1+tan^(2)x)dx=

int (1- tan x//2)/(1+ tan x//2)dx=

int_(0)^(pi//2)(2tan""(x)/(2)+xsec^(2)""(x)/(2))dx=

int Tan^(-1)((2x)/(1-x^(2)))dx=

int (1 + tan^(2) x)/(1 -tan^(2) x) dx =

I : int_(0)^(pi//2)(2tan""(x)/(2)+xsec^(2)""(x)/(2))dx=pi II : int_(0)^(1)xTan^(-1).xdx=(pi)/(4)-(1)/(2)

The period of tan x tan ((2pi)/(3)-x ) tan ((2pi)/(3) + x) is

(tan ((pi)/(4) +4))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)