Home
Class 12
MATHS
underset( x rarr 0 ) ("lim") [ ( 1-e^(x...

`underset( x rarr 0 ) ("lim") [ ( 1-e^(x)) ( sin x )/( |x|)]` is equal to
( where `[ **]`denotes greatest integer function )

A

`-1`

B

1

C

0

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE -2( LEVEL-I)|16 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-2(LEVEL-2)|5 Videos
  • LIMIT

    MOTION|Exercise EXERCISE-4|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)"sin" x d(x- [x]) is equal to , where [x] denotes greatest integer function-

Evaluate underset(x rarr 0 ) ("lim") [ ( sin^(-1) x )/( x ) ] ( where [ ** ] denotes the greatest integer function ) .

Find underset( x rarr 0 ) ( "Lim") ( e^(sinx) -sin x -1)/( x^(2))

underset( x rarr 0 ) ( "lim")((1+sin x )/( 1- sin x ))^("cosec x ") is equal to :

Find underset( x rarr 0 ) ( "Lim") ( e^(sin x) -sin x -1)/( x^(2))

int _(0) ^(2npi) (|sin x | - [|(sin x )/(2) | ]) dx is equal to (where [**] denotes the greatest integer function)

underset( x rarr - 7)( "Lim")( [x]^(2) + 15[x]+ 56)/( sin (x + 7 ) sin ( x+ 8 )) ( where [**] denotes greatest integer function )

Solve lim_(xto0)[(sin|x|)/(|x|)] , where [.] denotes greatest integer function.

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

MOTION-LIMIT-EXERCISE -1
  1. The limit underset( x rarr0 ) ( "lim") ( 1- cos x sqrt( cos 2x))/( x^(...

    Text Solution

    |

  2. lim(x->0^+)cos^(- 1)(1-x)/(sqrt(x))

    Text Solution

    |

  3. underset( x rarr 0 ) ("lim") [ ( 1-e^(x)) ( sin x )/( |x|)] is equal ...

    Text Solution

    |

  4. Evaluate: underset(hrarr0)("lim")(2[sqrt(3)sin(pi/6+h)-cos(pi/6+h)])/(...

    Text Solution

    |

  5. lim(x->0) sin(6x^2)/(lncos(2x^2-x)

    Text Solution

    |

  6. The value of underset( x rarr 0 ) ( "Lim") ( sin ( ln ( 1+ x)))/( ln (...

    Text Solution

    |

  7. underset( x rarr pi //2) ("Lim") ( 2 ^(cos x) - 1)/( x ( x-pi //2))= ...

    Text Solution

    |

  8. lim(x->0)((4^x-1)^3)/(sin(x/p)ln(1+(x^2)/3) is equal to

    Text Solution

    |

  9. The limit underset( x rarr a ) ("Lim") (2 -( a)/(x))^(tan ((pix)/( 2a)...

    Text Solution

    |

  10. underset( x rarr oo) ( "Lim") ((x+ 2)/( x-2))^(x+1)=

    Text Solution

    |

  11. The value of underset( x rarr pi //4) ("Lim") ( 1+[x])^(1//ln( tan x)...

    Text Solution

    |

  12. lim(x->oo) ((x^2-2x+1)/(x^2-4x+2))^x is equal to

    Text Solution

    |

  13. underset( x rarr 0 ) ("lim") ( cos mx )^(n//x^(2))

    Text Solution

    |

  14. If lim(x -> oo) (1 + a/x + b/x^2)^(2x)= e^2 then the values of a and ...

    Text Solution

    |

  15. underset( x rarr0 ) ( "lim" )( cot ((pi)/( 4) + x ))^("cosecx")=

    Text Solution

    |

  16. lim(x->oo)(sin(1/x)+cos(1/x))^x

    Text Solution

    |

  17. lim(x->oo) (root(3)(1+x)-root(3)(1-x))/x

    Text Solution

    |

  18. underset( x rarr 1 )("lim")( root ( 3)(7+x^(3))- sqrt( 3 +x^(2)))/( x-...

    Text Solution

    |

  19. ABC is an isosceles triangle described in a circle of radius r.If AB=...

    Text Solution

    |

  20. The figure shows a right triangle with its hypotenuse OB along the y-a...

    Text Solution

    |