Home
Class 12
MATHS
If a,b,c denote the sides of triangleABC...

If a,b,c denote the sides of `triangleABC`, show that the value of the expression, `a^3 (p-q)(p-r)+b^2(q-r)+b^2(q-r)(q-p)+c^2(r-p)(r-q)` cannot be negative where `p,q,r in R`.

Text Solution

Verified by Experts

The correct Answer is:
`=(ay-cz)^2 ge 0`
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLE

    MOTION|Exercise EXERCISE -1|36 Videos
  • SOLUTION OF TRIANGLE

    MOTION|Exercise EXERCISE - 2 (LEVEL I)|25 Videos
  • SEQUENCE & SERIES

    MOTION|Exercise Exercise -4 Level -II Previous Year /JEE Advanced|22 Videos
  • STRAIGHT LINE

    MOTION|Exercise Exercise 4 Lelvel -II|7 Videos

Similar Questions

Explore conceptually related problems

Add the following expressions: p^2-q +r, q^2 -r+ p and r^2-p+q

Find the value of (a^(p)/a^(q))^(p+q-r)xx(a^(r)/a^(p))^(r+p-q)xx(a^(q)/a^(r))^(q+r-p)

Add p(p-q),q(q-r) and r(r-p)

If the pth,qth,and rth terms of an A.P.are in G.P.then the common ratio of the G.P.is a.(pr)/(q^(2)) b.(r)/(p) c.(q+r)/(p+q) d.(q-r)/(p-q)

The sum of the first p,q,r terms of an A.P.are a,b,c respectively.Show that (a)/(p)(q-r)+(b)/(q)(r-p)+(c)/(r)(p-q)=0

If a=xy^(p-1),b=yz^(q-1),c=zx^(r-1) , then a^(q-r)b^(r-p)c^(p-q) is equal to

If the p^(th), q^(th) and r^(th) terms of a G.P are a,b,c respectively then the value of a^(q-r).b^(r-p).c^(p-q)=