Home
Class 12
MATHS
Let A={x""inNN:x^(2)-5x+6=0},B={x""inW:0...

Let `A={x""inNN:x^(2)-5x+6=0},B={x""inW:0lexlt2}andC={x""inNN:xlt3}`, then verify that `Axx(BcupC)=(AxxB)cup(AxxC)`

Answer

Step by step text solution for Let A={x""inNN:x^(2)-5x+6=0},B={x""inW:0lexlt2}andC={x""inNN:xlt3}, then verify that Axx(BcupC)=(AxxB)cup(AxxC) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise HS (XI) AND WBJEE 2018 (GROUP - D)|9 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise WBJEE 2018|30 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise HS (XI) AND WBJEE 2018 (GROUP - B)|14 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion-Reason Type)|2 Videos
  • ORDER AND DEGREE OF DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (E Assertion - Reasion Type )|2 Videos

Similar Questions

Explore conceptually related problems

Let A={x in N:x^2-5x+6=0}. B={x in W:0lex<2} and C={x in N:x<3} ,then verify that Axx(BcupC)=(AxxB)cup(AxxC)

If A={1,4},B={4,3},andC={3,6} , show that, A xx(BcupC)=(AxxB)cup (AxxC)

Knowledge Check

  • If A ={x:x^(2) -5x +6=0}. B ={2,4} and C= {4,5}, then Axx(B nnC) is-

    A
    null set
    B
    `{(4,2),(4,3)}`
    C
    `{(2,4),(3,4)}`
    D
    `{(2,4),(3,4), (4,4)}`
  • Let A={x:x inNN},B={x:x in 2n,ninNN},C={x:x=2n-1, n in NN} and D= {x:x is a prime number} then____ BcapC is

    A
    `phi`
    B
    {2}
    C
    B
    D
    D
  • Let A={x:x inNN},B={x:x in 2n,ninNN},C={x:x=2n-1, n in NN} and D= {x:x is a prime number} then____ A capC is

    A
    A
    B
    C
    C
    D
    D
    {2}
  • Similar Questions

    Explore conceptually related problems

    If A = {1, 3}, B = {3, 5} and C = {5, 10}, show that, Axx(Bcup C) =(AxxB) cup(AxxC)

    If A={x:0lt xlt4} and B={x:3lexlt6} where x is an integer then show that A capB={3}

    Let A={x:x in ZZ wedge-1 ltx le 1}, B={x:x in NN wedge 1 lt x lt 5} and C={x:x is an odd positive integer x and 1ltx le6} , then show that, (AxxB) cup(AxxC) = Axx(BcupC)

    If A={x:1 lex le2} and B={ x: 0 lt x le 4} , find A cup B

    If f(x)={(x[x], 0lexlt2),((x-1)[x],2lexle3):} , then f(x) is