Home
Class 12
MATHS
If D=|(a^(2)+1,ab,ac),(ba,b^(2)+1,bc),(c...

If `D=|(a^(2)+1,ab,ac),(ba,b^(2)+1,bc),(ca,cb,c^(2)+1)|` then D equal to

A

`1+a^(2)+b^(2)+c^(2)`

B

`a^(2)b^(2)c^(2)`

C

`bc+ca+ab`

D

zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} a^2 + 1 & ab & ac \\ ba & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} \), we will perform a series of row operations and simplifications. ### Step-by-Step Solution: 1. **Multiply Rows by Variables**: - Multiply Row 1 by \( a \), Row 2 by \( b \), and Row 3 by \( c \): \[ D = \begin{vmatrix} a(a^2 + 1) & a(ab) & a(ac) \\ b(ba) & b(b^2 + 1) & b(bc) \\ c(ca) & c(cb) & c(c^2 + 1) \end{vmatrix} \] This gives: \[ D = \begin{vmatrix} a^3 + a & a^2b & a^2c \\ b^2a & b^3 + b & b^2c \\ c^2a & c^2b & c^3 + c \end{vmatrix} \] 2. **Factor Out \( abc \)**: - Since we multiplied each row, we need to divide by \( abc \): \[ D = \frac{1}{abc} \begin{vmatrix} a^3 + a & a^2b & a^2c \\ b^2a & b^3 + b & b^2c \\ c^2a & c^2b & c^3 + c \end{vmatrix} \] 3. **Simplify the Determinant**: - We can factor out \( a \), \( b \), and \( c \) from each respective row: \[ D = \frac{1}{abc} \cdot abc \begin{vmatrix} a^2 + 1 & ab & ac \\ ba & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} a^2 + 1 & ab & ac \\ ba & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} \] 4. **Row Operation**: - Perform the row operation \( R_1 \to R_1 + R_2 + R_3 \): \[ D = \begin{vmatrix} (a^2 + 1) + (b^2 + 1) + (c^2 + 1) & ab + ba + cb & ac + bc + ca \\ ba & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} \] Which gives: \[ D = \begin{vmatrix} a^2 + b^2 + c^2 + 3 & ab + ba + cb & ac + bc + ca \\ ba & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} \] 5. **Factor Out Common Terms**: - Factor out \( 1 + a^2 + b^2 + c^2 \): \[ D = (1 + a^2 + b^2 + c^2) \begin{vmatrix} 1 & ab & ac \\ ba & 1 & bc \\ ca & cb & 1 \end{vmatrix} \] 6. **Simplify the Remaining Determinant**: - Now, we can compute the determinant: \[ D = (1 + a^2 + b^2 + c^2) \cdot 1 \] 7. **Final Result**: - Thus, the value of \( D \) is: \[ D = 1 + a^2 + b^2 + c^2 \] ### Final Answer: \[ D = 1 + a^2 + b^2 + c^2 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-I)|9 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-II)|6 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

One factor of |(a^(2) + x,ab,ac),(ab,b^(2) + x,cb),(ca,cb,c^(2) + x)| , is

If a,b, c, lambda in N , then the least possible value of |(a^(2)+lambda, ab,ac),(ba,b^(2)+lambda,bc),(ca, cb, c^(2)+lambda)| is

Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2) .

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

(1)/(a),a^(2),bc(1)/(b),b^(2),ca(1)/(c),c^(2),ab]|

det[[1,a,a^(2)+bc1,b,b^(2)+ac1,c,c^(2)+ab]] is equal to