Home
Class 12
MATHS
The value of the determinant Delta = |(s...

The value of the determinant `Delta = |(sin 2 alpha,sin (alpha + beta),sin (alpha + gamma)),(sin (beta + gamma),sin 2 beta,sin (gamma + beta)),((sin gamma + alpha),sin (gamma + beta),sin 2 gamma)|`, is

A

`Delta=0`

B

`Delta=sin^(2)alpha+sin^(2)beta+sin^(2)gamma`

C

`Delta=3//2`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-I)|9 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-II)|6 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos alpha, sin beta+cos beta),(sin gamma, cos alpha, sin gamma+cos beta)| then Delta equals

If Delta = det [[sin alpha, cos alpha, sin alpha + cos alphasin beta, cos alpha, sin beta + cos betasin gamma, cos alpha, sin gamma + cos beta]] then Delta

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

Prove that det [[sin alpha, cos alpha, sin (alpha + delta) sin beta, cos beta, sin (beta + delta) sin gamma, cos gamma, sin (gamma + delta)]] = 0

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

Without expanding evaluate the determinant det[[sin alpha,cos alpha sin(alpha+delta)sin beta,cos beta,sin(beta+delta)sin gamma,cos gamma,sin(gamma+delta)]]

Suppose alpha ,beta , gamma in R are such that sin alpha, sin beta , sin gamma ne 0 and Delta = |{:(sin^(2) alpha , sin alpha cos alpha , cos^(2) alpha),(sin^(2) beta , sin beta cos beta , cos^(2) beta),(sin^(2) gamma , sin gamma cos gamma , cos^(2) gamma):}| then Delta cannot exceed

Let alpha,beta and gamma are the angles of a right angle triangle,then the value of sin alpha*sin beta*sin(alpha-beta)+sin beta*sin gamma*sin(beta-gamma)+sin gamma*sin alpha*sin(gamma-beta)+sin(beta-gamma)*sin(gamma-gamma)*sin(gamma-

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in