Home
Class 12
MATHS
Let D=|(sinthetacosphi,sinthetasinphi,co...

Let `D=|(sinthetacosphi,sinthetasinphi,costheta),(costhetacosphi,costhetasinphi,-sintheta),(-sinthetasinphi,sinthetacosphi,0)|`, then

A

`Delta` is independent of `theta`

B

`Delta` is independent of `phi`

C

`Delta` is a constant

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-I)|9 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-II)|6 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

The value of f(pi/6) where f(theta)=|{:(cos^2theta,costhetasintheta,-sintheta),(costhetasintheta,sin^2theta,costheta),(sintheta,-costheta,0):}|

inte^(sintheta)[log(sintheta)+cosec^(2)theta]costheta"d"theta=

If sintheta-costheta=0 , then sin^3theta+cos^3theta=?

Let A={:[(costheta,-sintheta),(-sintheta,-costheta)]:} then inverse of A is

costheta[(costheta, sintheta),(-sintheta,costheta)]+sintheta[(sintheta,-costheta),(costheta,sintheta)] is equal to (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

int (cos2theta) . log((costheta+sintheta)/(costheta-sintheta))d theta is equal to

If I= [[1,0],[0,1]] , J = [[0,1],[-1,0]] and B = [[costheta, sintheta],[-sintheta, costheta]] , then B= (A) Icostheta+Jsintheta (B) Icostheta-Jsintheta (C) Isintheta+Jcostheta (D) -Icostheta+Jsintheta

If theta epsilon (0, pi/2) then the value of |((sintheta+cosectheta)^2, (sintheta- cosectheta)^2,1 ),((costheta+sectheta)^2, (costheta-sectheta)^2, 1),((tantheta+cottheta)^2, (tantheta-cottheta)^2, 1)|= (A) sintheta+costhetas+tantheta (B) 1 (C) 0 (D) 4

int((sintheta+costheta))/sqrt(sin2theta)"d"theta=